Mister Exam

Derivative of y=sin5x^-3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
   3     
sin (5*x)
1sin3(5x)\frac{1}{\sin^{3}{\left(5 x \right)}}
sin(5*x)^(-3)
Detail solution
  1. Let u=sin(5x)u = \sin{\left(5 x \right)}.

  2. Apply the power rule: 1u3\frac{1}{u^{3}} goes to 3u4- \frac{3}{u^{4}}

  3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sin{\left(5 x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    The result of the chain rule is:

    15cos(5x)sin4(5x)- \frac{15 \cos{\left(5 x \right)}}{\sin^{4}{\left(5 x \right)}}


The answer is:

15cos(5x)sin4(5x)- \frac{15 \cos{\left(5 x \right)}}{\sin^{4}{\left(5 x \right)}}

The graph
02468-8-6-4-2-1010-50000005000000
The first derivative [src]
-15*cos(5*x)
------------
    4       
 sin (5*x)  
15cos(5x)sin4(5x)- \frac{15 \cos{\left(5 x \right)}}{\sin^{4}{\left(5 x \right)}}
The second derivative [src]
   /         2     \
   |    4*cos (5*x)|
75*|1 + -----------|
   |        2      |
   \     sin (5*x) /
--------------------
        3           
     sin (5*x)      
75(1+4cos2(5x)sin2(5x))sin3(5x)\frac{75 \left(1 + \frac{4 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right)}{\sin^{3}{\left(5 x \right)}}
The third derivative [src]
     /           2     \         
     |     20*cos (5*x)|         
-375*|11 + ------------|*cos(5*x)
     |         2       |         
     \      sin (5*x)  /         
---------------------------------
               4                 
            sin (5*x)            
375(11+20cos2(5x)sin2(5x))cos(5x)sin4(5x)- \frac{375 \left(11 + \frac{20 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{\sin^{4}{\left(5 x \right)}}
The graph
Derivative of y=sin5x^-3