Mister Exam

Other calculators


y=sin(5x+3)^3

Derivative of y=sin(5x+3)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3         
sin (5*x + 3)
sin3(5x+3)\sin^{3}{\left(5 x + 3 \right)}
sin(5*x + 3)^3
Detail solution
  1. Let u=sin(5x+3)u = \sin{\left(5 x + 3 \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxsin(5x+3)\frac{d}{d x} \sin{\left(5 x + 3 \right)}:

    1. Let u=5x+3u = 5 x + 3.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(5x+3)\frac{d}{d x} \left(5 x + 3\right):

      1. Differentiate 5x+35 x + 3 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        2. The derivative of the constant 33 is zero.

        The result is: 55

      The result of the chain rule is:

      5cos(5x+3)5 \cos{\left(5 x + 3 \right)}

    The result of the chain rule is:

    15sin2(5x+3)cos(5x+3)15 \sin^{2}{\left(5 x + 3 \right)} \cos{\left(5 x + 3 \right)}

  4. Now simplify:

    15sin2(5x+3)cos(5x+3)15 \sin^{2}{\left(5 x + 3 \right)} \cos{\left(5 x + 3 \right)}


The answer is:

15sin2(5x+3)cos(5x+3)15 \sin^{2}{\left(5 x + 3 \right)} \cos{\left(5 x + 3 \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
      2                      
15*sin (5*x + 3)*cos(5*x + 3)
15sin2(5x+3)cos(5x+3)15 \sin^{2}{\left(5 x + 3 \right)} \cos{\left(5 x + 3 \right)}
The second derivative [src]
   /     2                 2         \             
75*\- sin (3 + 5*x) + 2*cos (3 + 5*x)/*sin(3 + 5*x)
75(sin2(5x+3)+2cos2(5x+3))sin(5x+3)75 \left(- \sin^{2}{\left(5 x + 3 \right)} + 2 \cos^{2}{\left(5 x + 3 \right)}\right) \sin{\left(5 x + 3 \right)}
The third derivative [src]
    /       2                 2         \             
375*\- 7*sin (3 + 5*x) + 2*cos (3 + 5*x)/*cos(3 + 5*x)
375(7sin2(5x+3)+2cos2(5x+3))cos(5x+3)375 \left(- 7 \sin^{2}{\left(5 x + 3 \right)} + 2 \cos^{2}{\left(5 x + 3 \right)}\right) \cos{\left(5 x + 3 \right)}
The graph
Derivative of y=sin(5x+3)^3