Mister Exam

Derivative of y=sin5x+4ctg(3-4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(5*x) + 4*cot(3 - 4*x)
sin(5x)+4cot(34x)\sin{\left(5 x \right)} + 4 \cot{\left(3 - 4 x \right)}
sin(5*x) + 4*cot(3 - 4*x)
Detail solution
  1. Differentiate sin(5x)+4cot(34x)\sin{\left(5 x \right)} + 4 \cot{\left(3 - 4 x \right)} term by term:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(34x)=1tan(4x3)\cot{\left(3 - 4 x \right)} = - \frac{1}{\tan{\left(4 x - 3 \right)}}

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Let u=tan(4x3)u = \tan{\left(4 x - 3 \right)}.

          2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

          3. Then, apply the chain rule. Multiply by ddxtan(4x3)\frac{d}{d x} \tan{\left(4 x - 3 \right)}:

            1. Rewrite the function to be differentiated:

              tan(4x3)=sin(4x3)cos(4x3)\tan{\left(4 x - 3 \right)} = \frac{\sin{\left(4 x - 3 \right)}}{\cos{\left(4 x - 3 \right)}}

            2. Apply the quotient rule, which is:

              ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

              f(x)=sin(4x3)f{\left(x \right)} = \sin{\left(4 x - 3 \right)} and g(x)=cos(4x3)g{\left(x \right)} = \cos{\left(4 x - 3 \right)}.

              To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

              1. Let u=4x3u = 4 x - 3.

              2. The derivative of sine is cosine:

                ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

              3. Then, apply the chain rule. Multiply by ddx(4x3)\frac{d}{d x} \left(4 x - 3\right):

                1. Differentiate 4x34 x - 3 term by term:

                  1. The derivative of the constant 3-3 is zero.

                  2. The derivative of a constant times a function is the constant times the derivative of the function.

                    1. Apply the power rule: xx goes to 11

                    So, the result is: 44

                  The result is: 44

                The result of the chain rule is:

                4cos(4x3)4 \cos{\left(4 x - 3 \right)}

              To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

              1. Let u=4x3u = 4 x - 3.

              2. The derivative of cosine is negative sine:

                dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

              3. Then, apply the chain rule. Multiply by ddx(4x3)\frac{d}{d x} \left(4 x - 3\right):

                1. Differentiate 4x34 x - 3 term by term:

                  1. The derivative of the constant 3-3 is zero.

                  2. The derivative of a constant times a function is the constant times the derivative of the function.

                    1. Apply the power rule: xx goes to 11

                    So, the result is: 44

                  The result is: 44

                The result of the chain rule is:

                4sin(4x3)- 4 \sin{\left(4 x - 3 \right)}

              Now plug in to the quotient rule:

              4sin2(4x3)+4cos2(4x3)cos2(4x3)\frac{4 \sin^{2}{\left(4 x - 3 \right)} + 4 \cos^{2}{\left(4 x - 3 \right)}}{\cos^{2}{\left(4 x - 3 \right)}}

            The result of the chain rule is:

            4sin2(4x3)+4cos2(4x3)cos2(4x3)tan2(4x3)- \frac{4 \sin^{2}{\left(4 x - 3 \right)} + 4 \cos^{2}{\left(4 x - 3 \right)}}{\cos^{2}{\left(4 x - 3 \right)} \tan^{2}{\left(4 x - 3 \right)}}

          So, the result is: 4sin2(4x3)+4cos2(4x3)cos2(4x3)tan2(4x3)\frac{4 \sin^{2}{\left(4 x - 3 \right)} + 4 \cos^{2}{\left(4 x - 3 \right)}}{\cos^{2}{\left(4 x - 3 \right)} \tan^{2}{\left(4 x - 3 \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(34x)=cos(4x3)sin(4x3)\cot{\left(3 - 4 x \right)} = - \frac{\cos{\left(4 x - 3 \right)}}{\sin{\left(4 x - 3 \right)}}

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=cos(4x3)f{\left(x \right)} = \cos{\left(4 x - 3 \right)} and g(x)=sin(4x3)g{\left(x \right)} = \sin{\left(4 x - 3 \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=4x3u = 4 x - 3.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx(4x3)\frac{d}{d x} \left(4 x - 3\right):

              1. Differentiate 4x34 x - 3 term by term:

                1. The derivative of the constant 3-3 is zero.

                2. The derivative of a constant times a function is the constant times the derivative of the function.

                  1. Apply the power rule: xx goes to 11

                  So, the result is: 44

                The result is: 44

              The result of the chain rule is:

              4sin(4x3)- 4 \sin{\left(4 x - 3 \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=4x3u = 4 x - 3.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx(4x3)\frac{d}{d x} \left(4 x - 3\right):

              1. Differentiate 4x34 x - 3 term by term:

                1. The derivative of the constant 3-3 is zero.

                2. The derivative of a constant times a function is the constant times the derivative of the function.

                  1. Apply the power rule: xx goes to 11

                  So, the result is: 44

                The result is: 44

              The result of the chain rule is:

              4cos(4x3)4 \cos{\left(4 x - 3 \right)}

            Now plug in to the quotient rule:

            4sin2(4x3)4cos2(4x3)sin2(4x3)\frac{- 4 \sin^{2}{\left(4 x - 3 \right)} - 4 \cos^{2}{\left(4 x - 3 \right)}}{\sin^{2}{\left(4 x - 3 \right)}}

          So, the result is: 4sin2(4x3)4cos2(4x3)sin2(4x3)- \frac{- 4 \sin^{2}{\left(4 x - 3 \right)} - 4 \cos^{2}{\left(4 x - 3 \right)}}{\sin^{2}{\left(4 x - 3 \right)}}

      So, the result is: 4(4sin2(4x3)+4cos2(4x3))cos2(4x3)tan2(4x3)\frac{4 \left(4 \sin^{2}{\left(4 x - 3 \right)} + 4 \cos^{2}{\left(4 x - 3 \right)}\right)}{\cos^{2}{\left(4 x - 3 \right)} \tan^{2}{\left(4 x - 3 \right)}}

    The result is: 4(4sin2(4x3)+4cos2(4x3))cos2(4x3)tan2(4x3)+5cos(5x)\frac{4 \left(4 \sin^{2}{\left(4 x - 3 \right)} + 4 \cos^{2}{\left(4 x - 3 \right)}\right)}{\cos^{2}{\left(4 x - 3 \right)} \tan^{2}{\left(4 x - 3 \right)}} + 5 \cos{\left(5 x \right)}

  2. Now simplify:

    5cos(5x)+16+16tan2(4x3)5 \cos{\left(5 x \right)} + 16 + \frac{16}{\tan^{2}{\left(4 x - 3 \right)}}


The answer is:

5cos(5x)+16+16tan2(4x3)5 \cos{\left(5 x \right)} + 16 + \frac{16}{\tan^{2}{\left(4 x - 3 \right)}}

The graph
02468-8-6-4-2-101020000000-10000000
The first derivative [src]
                        2         
16 + 5*cos(5*x) + 16*cot (3 - 4*x)
5cos(5x)+16cot2(34x)+165 \cos{\left(5 x \right)} + 16 \cot^{2}{\left(3 - 4 x \right)} + 16
The second derivative [src]
 /                  /       2          \              \
-\25*sin(5*x) + 128*\1 + cot (-3 + 4*x)/*cot(-3 + 4*x)/
(128(cot2(4x3)+1)cot(4x3)+25sin(5x))- (128 \left(\cot^{2}{\left(4 x - 3 \right)} + 1\right) \cot{\left(4 x - 3 \right)} + 25 \sin{\left(5 x \right)})
The third derivative [src]
                                        2                                           
                    /       2          \            2           /       2          \
-125*cos(5*x) + 512*\1 + cot (-3 + 4*x)/  + 1024*cot (-3 + 4*x)*\1 + cot (-3 + 4*x)/
512(cot2(4x3)+1)2+1024(cot2(4x3)+1)cot2(4x3)125cos(5x)512 \left(\cot^{2}{\left(4 x - 3 \right)} + 1\right)^{2} + 1024 \left(\cot^{2}{\left(4 x - 3 \right)} + 1\right) \cot^{2}{\left(4 x - 3 \right)} - 125 \cos{\left(5 x \right)}
The graph
Derivative of y=sin5x+4ctg(3-4x)