Mister Exam

Derivative of y=(sin(5x²-6x+e^x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2          x\
sin\5*x  - 6*x + E /
$$\sin{\left(e^{x} + \left(5 x^{2} - 6 x\right) \right)}$$
sin(5*x^2 - 6*x + E^x)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of is itself.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/      x       \    /   2          x\
\-6 + E  + 10*x/*cos\5*x  - 6*x + E /
$$\left(e^{x} + 10 x - 6\right) \cos{\left(e^{x} + \left(5 x^{2} - 6 x\right) \right)}$$
The second derivative [src]
                                                  2                      
/      x\    /          2    x\   /             x\     /          2    x\
\10 + e /*cos\-6*x + 5*x  + e / - \-6 + 10*x + e / *sin\-6*x + 5*x  + e /
$$\left(e^{x} + 10\right) \cos{\left(5 x^{2} - 6 x + e^{x} \right)} - \left(10 x + e^{x} - 6\right)^{2} \sin{\left(5 x^{2} - 6 x + e^{x} \right)}$$
The third derivative [src]
                                           3                                                                           
   /          2    x\  x   /             x\     /          2    x\     /      x\ /             x\    /          2    x\
cos\-6*x + 5*x  + e /*e  - \-6 + 10*x + e / *cos\-6*x + 5*x  + e / - 3*\10 + e /*\-6 + 10*x + e /*sin\-6*x + 5*x  + e /
$$- 3 \left(e^{x} + 10\right) \left(10 x + e^{x} - 6\right) \sin{\left(5 x^{2} - 6 x + e^{x} \right)} - \left(10 x + e^{x} - 6\right)^{3} \cos{\left(5 x^{2} - 6 x + e^{x} \right)} + e^{x} \cos{\left(5 x^{2} - 6 x + e^{x} \right)}$$
The graph
Derivative of y=(sin(5x²-6x+e^x))