Mister Exam

Other calculators


y=sin(4x)+cos(3x^2)

Derivative of y=sin(4x)+cos(3x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              /   2\
sin(4*x) + cos\3*x /
$$\sin{\left(4 x \right)} + \cos{\left(3 x^{2} \right)}$$
d /              /   2\\
--\sin(4*x) + cos\3*x //
dx                      
$$\frac{d}{d x} \left(\sin{\left(4 x \right)} + \cos{\left(3 x^{2} \right)}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    4. Let .

    5. The derivative of cosine is negative sine:

    6. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
                    /   2\
4*cos(4*x) - 6*x*sin\3*x /
$$- 6 x \sin{\left(3 x^{2} \right)} + 4 \cos{\left(4 x \right)}$$
The second derivative [src]
   /     /   2\                    2    /   2\\
-2*\3*sin\3*x / + 8*sin(4*x) + 18*x *cos\3*x //
$$- 2 \cdot \left(18 x^{2} \cos{\left(3 x^{2} \right)} + 8 \sin{\left(4 x \right)} + 3 \sin{\left(3 x^{2} \right)}\right)$$
The third derivative [src]
  /                       /   2\       3    /   2\\
4*\-16*cos(4*x) - 27*x*cos\3*x / + 54*x *sin\3*x //
$$4 \cdot \left(54 x^{3} \sin{\left(3 x^{2} \right)} - 27 x \cos{\left(3 x^{2} \right)} - 16 \cos{\left(4 x \right)}\right)$$
The graph
Derivative of y=sin(4x)+cos(3x^2)