Mister Exam

Other calculators


y=sin(4x)+cos(3x^2)

Derivative of y=sin(4x)+cos(3x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              /   2\
sin(4*x) + cos\3*x /
sin(4x)+cos(3x2)\sin{\left(4 x \right)} + \cos{\left(3 x^{2} \right)}
d /              /   2\\
--\sin(4*x) + cos\3*x //
dx                      
ddx(sin(4x)+cos(3x2))\frac{d}{d x} \left(\sin{\left(4 x \right)} + \cos{\left(3 x^{2} \right)}\right)
Detail solution
  1. Differentiate sin(4x)+cos(3x2)\sin{\left(4 x \right)} + \cos{\left(3 x^{2} \right)} term by term:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    4. Let u=3x2u = 3 x^{2}.

    5. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    6. Then, apply the chain rule. Multiply by ddx3x2\frac{d}{d x} 3 x^{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 6x6 x

      The result of the chain rule is:

      6xsin(3x2)- 6 x \sin{\left(3 x^{2} \right)}

    The result is: 6xsin(3x2)+4cos(4x)- 6 x \sin{\left(3 x^{2} \right)} + 4 \cos{\left(4 x \right)}


The answer is:

6xsin(3x2)+4cos(4x)- 6 x \sin{\left(3 x^{2} \right)} + 4 \cos{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
                    /   2\
4*cos(4*x) - 6*x*sin\3*x /
6xsin(3x2)+4cos(4x)- 6 x \sin{\left(3 x^{2} \right)} + 4 \cos{\left(4 x \right)}
The second derivative [src]
   /     /   2\                    2    /   2\\
-2*\3*sin\3*x / + 8*sin(4*x) + 18*x *cos\3*x //
2(18x2cos(3x2)+8sin(4x)+3sin(3x2))- 2 \cdot \left(18 x^{2} \cos{\left(3 x^{2} \right)} + 8 \sin{\left(4 x \right)} + 3 \sin{\left(3 x^{2} \right)}\right)
The third derivative [src]
  /                       /   2\       3    /   2\\
4*\-16*cos(4*x) - 27*x*cos\3*x / + 54*x *sin\3*x //
4(54x3sin(3x2)27xcos(3x2)16cos(4x))4 \cdot \left(54 x^{3} \sin{\left(3 x^{2} \right)} - 27 x \cos{\left(3 x^{2} \right)} - 16 \cos{\left(4 x \right)}\right)
The graph
Derivative of y=sin(4x)+cos(3x^2)