Mister Exam

Other calculators


y=sin(3x^2+1)

Derivative of y=sin(3x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2    \
sin\3*x  + 1/
$$\sin{\left(3 x^{2} + 1 \right)}$$
sin(3*x^2 + 1)
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       /   2    \
6*x*cos\3*x  + 1/
$$6 x \cos{\left(3 x^{2} + 1 \right)}$$
The second derivative [src]
  /     2    /       2\      /       2\\
6*\- 6*x *sin\1 + 3*x / + cos\1 + 3*x //
$$6 \left(- 6 x^{2} \sin{\left(3 x^{2} + 1 \right)} + \cos{\left(3 x^{2} + 1 \right)}\right)$$
The third derivative [src]
       /   2    /       2\      /       2\\
-108*x*\2*x *cos\1 + 3*x / + sin\1 + 3*x //
$$- 108 x \left(2 x^{2} \cos{\left(3 x^{2} + 1 \right)} + \sin{\left(3 x^{2} + 1 \right)}\right)$$
The graph
Derivative of y=sin(3x^2+1)