Mister Exam

Other calculators


y=(sin3x+5x^2)^2

Derivative of y=(sin3x+5x^2)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 2
/              2\ 
\sin(3*x) + 5*x / 
(5x2+sin(3x))2\left(5 x^{2} + \sin{\left(3 x \right)}\right)^{2}
  /                 2\
d |/              2\ |
--\\sin(3*x) + 5*x / /
dx                    
ddx(5x2+sin(3x))2\frac{d}{d x} \left(5 x^{2} + \sin{\left(3 x \right)}\right)^{2}
Detail solution
  1. Let u=5x2+sin(3x)u = 5 x^{2} + \sin{\left(3 x \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddx(5x2+sin(3x))\frac{d}{d x} \left(5 x^{2} + \sin{\left(3 x \right)}\right):

    1. Differentiate 5x2+sin(3x)5 x^{2} + \sin{\left(3 x \right)} term by term:

      1. Let u=3xu = 3 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        The result of the chain rule is:

        3cos(3x)3 \cos{\left(3 x \right)}

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 10x10 x

      The result is: 10x+3cos(3x)10 x + 3 \cos{\left(3 x \right)}

    The result of the chain rule is:

    (10x+3cos(3x))(10x2+2sin(3x))\left(10 x + 3 \cos{\left(3 x \right)}\right) \left(10 x^{2} + 2 \sin{\left(3 x \right)}\right)

  4. Now simplify:

    2(10x+3cos(3x))(5x2+sin(3x))2 \cdot \left(10 x + 3 \cos{\left(3 x \right)}\right) \left(5 x^{2} + \sin{\left(3 x \right)}\right)


The answer is:

2(10x+3cos(3x))(5x2+sin(3x))2 \cdot \left(10 x + 3 \cos{\left(3 x \right)}\right) \left(5 x^{2} + \sin{\left(3 x \right)}\right)

The graph
02468-8-6-4-2-1010-500000500000
The first derivative [src]
                    /              2\
(6*cos(3*x) + 20*x)*\sin(3*x) + 5*x /
(20x+6cos(3x))(5x2+sin(3x))\left(20 x + 6 \cos{\left(3 x \right)}\right) \left(5 x^{2} + \sin{\left(3 x \right)}\right)
The second derivative [src]
  /                   2                      /   2           \\
2*\(3*cos(3*x) + 10*x)  - (-10 + 9*sin(3*x))*\5*x  + sin(3*x)//
2((10x+3cos(3x))2(5x2+sin(3x))(9sin(3x)10))2 \left(\left(10 x + 3 \cos{\left(3 x \right)}\right)^{2} - \left(5 x^{2} + \sin{\left(3 x \right)}\right) \left(9 \sin{\left(3 x \right)} - 10\right)\right)
The third derivative [src]
   /                                           /   2           \         \
-6*\(-10 + 9*sin(3*x))*(3*cos(3*x) + 10*x) + 9*\5*x  + sin(3*x)/*cos(3*x)/
6((10x+3cos(3x))(9sin(3x)10)+9(5x2+sin(3x))cos(3x))- 6 \left(\left(10 x + 3 \cos{\left(3 x \right)}\right) \left(9 \sin{\left(3 x \right)} - 10\right) + 9 \cdot \left(5 x^{2} + \sin{\left(3 x \right)}\right) \cos{\left(3 x \right)}\right)
The graph
Derivative of y=(sin3x+5x^2)^2