Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
4 3 2
- 2*sin (x)*cos(x) + 3*cos (x)*sin (x)
$$- 2 \sin^{4}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}$$
The second derivative
[src]
/ 2 2 2 / 2 2 \ 2 / 2 2 \\
\- 12*cos (x)*sin (x) - 3*cos (x)*\sin (x) - 2*cos (x)/ + 2*sin (x)*\sin (x) - cos (x)//*sin(x)
$$\left(- 3 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + 2 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} - 12 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}$$
The third derivative
[src]
/ 4 2 / 2 2 \ 2 / 2 2 \ 2 / 2 2 \\
\8*sin (x) - 3*cos (x)*\- 2*cos (x) + 7*sin (x)/ + 18*sin (x)*\sin (x) - cos (x)/ + 18*sin (x)*\sin (x) - 2*cos (x)//*cos(x)
$$\left(18 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} + 18 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} - 3 \cdot \left(7 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + 8 \sin^{4}{\left(x \right)}\right) \cos{\left(x \right)}$$