/ 2\ / 2\ sin\3*x /*cos\3*x /
sin(3*x^2)*cos(3*x^2)
Apply the product rule:
; to find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
; to find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
2/ 2\ 2/ 2\ - 6*x*sin \3*x / + 6*x*cos \3*x /
// / 2\ 2 / 2\\ / 2\ / 2 / 2\ / 2\\ / 2\ 2 / 2\ / 2\\ -6*\\- cos\3*x / + 6*x *sin\3*x //*cos\3*x / + \6*x *cos\3*x / + sin\3*x //*sin\3*x / + 12*x *cos\3*x /*sin\3*x //
// / 2\ 2 / 2\\ / 2\ / / 2\ 2 / 2\\ / 2\ / 2 / 2\ / 2\\ / 2\ / 2 / 2\ / 2\\ / 2\\ 108*x*\\- cos\3*x / + 2*x *sin\3*x //*sin\3*x / + \- cos\3*x / + 6*x *sin\3*x //*sin\3*x / - \2*x *cos\3*x / + sin\3*x //*cos\3*x / - \6*x *cos\3*x / + sin\3*x //*cos\3*x //