Mister Exam

Derivative of y=sin(3x²)cos(3x²)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2\    /   2\
sin\3*x /*cos\3*x /
$$\sin{\left(3 x^{2} \right)} \cos{\left(3 x^{2} \right)}$$
sin(3*x^2)*cos(3*x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2/   2\          2/   2\
- 6*x*sin \3*x / + 6*x*cos \3*x /
$$- 6 x \sin^{2}{\left(3 x^{2} \right)} + 6 x \cos^{2}{\left(3 x^{2} \right)}$$
The second derivative [src]
   //     /   2\      2    /   2\\    /   2\   /   2    /   2\      /   2\\    /   2\       2    /   2\    /   2\\
-6*\\- cos\3*x / + 6*x *sin\3*x //*cos\3*x / + \6*x *cos\3*x / + sin\3*x //*sin\3*x / + 12*x *cos\3*x /*sin\3*x //
$$- 6 \left(12 x^{2} \sin{\left(3 x^{2} \right)} \cos{\left(3 x^{2} \right)} + \left(6 x^{2} \sin{\left(3 x^{2} \right)} - \cos{\left(3 x^{2} \right)}\right) \cos{\left(3 x^{2} \right)} + \left(6 x^{2} \cos{\left(3 x^{2} \right)} + \sin{\left(3 x^{2} \right)}\right) \sin{\left(3 x^{2} \right)}\right)$$
The third derivative [src]
      //     /   2\      2    /   2\\    /   2\   /     /   2\      2    /   2\\    /   2\   /   2    /   2\      /   2\\    /   2\   /   2    /   2\      /   2\\    /   2\\
108*x*\\- cos\3*x / + 2*x *sin\3*x //*sin\3*x / + \- cos\3*x / + 6*x *sin\3*x //*sin\3*x / - \2*x *cos\3*x / + sin\3*x //*cos\3*x / - \6*x *cos\3*x / + sin\3*x //*cos\3*x //
$$108 x \left(\left(2 x^{2} \sin{\left(3 x^{2} \right)} - \cos{\left(3 x^{2} \right)}\right) \sin{\left(3 x^{2} \right)} + \left(6 x^{2} \sin{\left(3 x^{2} \right)} - \cos{\left(3 x^{2} \right)}\right) \sin{\left(3 x^{2} \right)} - \left(2 x^{2} \cos{\left(3 x^{2} \right)} + \sin{\left(3 x^{2} \right)}\right) \cos{\left(3 x^{2} \right)} - \left(6 x^{2} \cos{\left(3 x^{2} \right)} + \sin{\left(3 x^{2} \right)}\right) \cos{\left(3 x^{2} \right)}\right)$$
The graph
Derivative of y=sin(3x²)cos(3x²)