Mister Exam

Derivative of y=sin³5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   35   
sin  (x)
sin35(x)\sin^{35}{\left(x \right)}
d /   35   \
--\sin  (x)/
dx          
ddxsin35(x)\frac{d}{d x} \sin^{35}{\left(x \right)}
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

  2. Apply the power rule: u35u^{35} goes to 35u3435 u^{34}

  3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result of the chain rule is:

    35sin34(x)cos(x)35 \sin^{34}{\left(x \right)} \cos{\left(x \right)}


The answer is:

35sin34(x)cos(x)35 \sin^{34}{\left(x \right)} \cos{\left(x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
      34          
35*sin  (x)*cos(x)
35sin34(x)cos(x)35 \sin^{34}{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
      33    /     2            2   \
35*sin  (x)*\- sin (x) + 34*cos (x)/
35(sin2(x)+34cos2(x))sin33(x)35 \left(- \sin^{2}{\left(x \right)} + 34 \cos^{2}{\left(x \right)}\right) \sin^{33}{\left(x \right)}
The third derivative [src]
      32    /         2              2   \       
35*sin  (x)*\- 103*sin (x) + 1122*cos (x)/*cos(x)
35(103sin2(x)+1122cos2(x))sin32(x)cos(x)35 \left(- 103 \sin^{2}{\left(x \right)} + 1122 \cos^{2}{\left(x \right)}\right) \sin^{32}{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of y=sin³5x