35 sin (x)
d / 35 \ --\sin (x)/ dx
Let u=sin(x)u = \sin{\left(x \right)}u=sin(x).
Apply the power rule: u35u^{35}u35 goes to 35u3435 u^{34}35u34
Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}dxdsin(x):
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
34 35*sin (x)*cos(x)
33 / 2 2 \ 35*sin (x)*\- sin (x) + 34*cos (x)/
32 / 2 2 \ 35*sin (x)*\- 103*sin (x) + 1122*cos (x)/*cos(x)