Mister Exam

Derivative of y=sin2t+2cos2t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*t) + 2*cos(2*t)
sin(2t)+2cos(2t)\sin{\left(2 t \right)} + 2 \cos{\left(2 t \right)}
sin(2*t) + 2*cos(2*t)
Detail solution
  1. Differentiate sin(2t)+2cos(2t)\sin{\left(2 t \right)} + 2 \cos{\left(2 t \right)} term by term:

    1. Let u=2tu = 2 t.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddt2t\frac{d}{d t} 2 t:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: tt goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2t)2 \cos{\left(2 t \right)}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2tu = 2 t.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddt2t\frac{d}{d t} 2 t:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: tt goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2sin(2t)- 2 \sin{\left(2 t \right)}

      So, the result is: 4sin(2t)- 4 \sin{\left(2 t \right)}

    The result is: 4sin(2t)+2cos(2t)- 4 \sin{\left(2 t \right)} + 2 \cos{\left(2 t \right)}


The answer is:

4sin(2t)+2cos(2t)- 4 \sin{\left(2 t \right)} + 2 \cos{\left(2 t \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
-4*sin(2*t) + 2*cos(2*t)
4sin(2t)+2cos(2t)- 4 \sin{\left(2 t \right)} + 2 \cos{\left(2 t \right)}
The second derivative [src]
-4*(2*cos(2*t) + sin(2*t))
4(sin(2t)+2cos(2t))- 4 \left(\sin{\left(2 t \right)} + 2 \cos{\left(2 t \right)}\right)
The third derivative [src]
8*(-cos(2*t) + 2*sin(2*t))
8(2sin(2t)cos(2t))8 \left(2 \sin{\left(2 t \right)} - \cos{\left(2 t \right)}\right)
The graph
Derivative of y=sin2t+2cos2t