Mister Exam

Derivative of y=sh(ln(tg2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sinh(log(tan(2*x)))
$$\sinh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}$$
d                      
--(sinh(log(tan(2*x))))
dx                     
$$\frac{d}{d x} \sinh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}$$
The graph
The first derivative [src]
/         2     \                    
\2 + 2*tan (2*x)/*cosh(log(tan(2*x)))
-------------------------------------
               tan(2*x)              
$$\frac{\left(2 \tan^{2}{\left(2 x \right)} + 2\right) \cosh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan{\left(2 x \right)}}$$
The second derivative [src]
                  /                        /       2     \                       /       2     \                    \
  /       2     \ |                        \1 + tan (2*x)/*sinh(log(tan(2*x)))   \1 + tan (2*x)/*cosh(log(tan(2*x)))|
4*\1 + tan (2*x)/*|2*cosh(log(tan(2*x))) + ----------------------------------- - -----------------------------------|
                  |                                        2                                     2                  |
                  \                                     tan (2*x)                             tan (2*x)             /
$$4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\frac{\left(\tan^{2}{\left(2 x \right)} + 1\right) \sinh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan^{2}{\left(2 x \right)}} - \frac{\left(\tan^{2}{\left(2 x \right)} + 1\right) \cosh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan^{2}{\left(2 x \right)}} + 2 \cosh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}\right)$$
The third derivative [src]
                  /                                                                                          2                                        2                                                            \
                  |                                   /       2     \                         /       2     \                          /       2     \                          /       2     \                    |
  /       2     \ |                                 4*\1 + tan (2*x)/*cosh(log(tan(2*x)))   3*\1 + tan (2*x)/ *sinh(log(tan(2*x)))   3*\1 + tan (2*x)/ *cosh(log(tan(2*x)))   6*\1 + tan (2*x)/*sinh(log(tan(2*x)))|
8*\1 + tan (2*x)/*|4*cosh(log(tan(2*x)))*tan(2*x) - ------------------------------------- - -------------------------------------- + -------------------------------------- + -------------------------------------|
                  |                                                tan(2*x)                                  3                                        3                                      tan(2*x)              |
                  \                                                                                       tan (2*x)                                tan (2*x)                                                       /
$$8 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(- \frac{3 \left(\tan^{2}{\left(2 x \right)} + 1\right)^{2} \sinh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan^{3}{\left(2 x \right)}} + \frac{3 \left(\tan^{2}{\left(2 x \right)} + 1\right)^{2} \cosh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan^{3}{\left(2 x \right)}} + \frac{6 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sinh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan{\left(2 x \right)}} - \frac{4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cosh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}}{\tan{\left(2 x \right)}} + 4 \tan{\left(2 x \right)} \cosh{\left(\log{\left(\tan{\left(2 x \right)} \right)} \right)}\right)$$
The graph
Derivative of y=sh(ln(tg2x))