Detail solution
-
Apply the product rule:
; to find :
-
Differentiate term by term:
-
Rewrite the function to be differentiated:
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
So, the result is:
The result is:
; to find :
-
Differentiate term by term:
-
The derivative of secant is secant times tangent:
-
The result is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \ / 2 \
(sec(x) - tan(x))*\1 + tan (x) + sec(x)*tan(x)/ + (sec(x) + tan(x))*\-1 - tan (x) + sec(x)*tan(x)/
$$\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1\right) + \left(\tan{\left(x \right)} + \sec{\left(x \right)}\right) \left(- \tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} - 1\right)$$
The second derivative
[src]
/ 2 / 2 \ / 2 \ \ / 2 / 2 \ / 2 \ \ / 2 \ / 2 \
(sec(x) + tan(x))*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) - 2*\1 + tan (x)/*tan(x)/ - (-sec(x) + tan(x))*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/ - 2*\1 + tan (x) + sec(x)*tan(x)/*\1 + tan (x) - sec(x)*tan(x)/
$$- \left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)}\right) + \left(\tan{\left(x \right)} + \sec{\left(x \right)}\right) \left(- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)}\right) - 2 \left(\tan^{2}{\left(x \right)} - \tan{\left(x \right)} \sec{\left(x \right)} + 1\right) \left(\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1\right)$$
The third derivative
[src]
/ 2 \ / 2 \
| / 2 \ 3 2 / 2 \ / 2 \ | | / 2 \ 3 2 / 2 \ / 2 \ | / 2 \ / 2 / 2 \ / 2 \ \ / 2 \ / 2 / 2 \ / 2 \ \
- (-sec(x) + tan(x))*\2*\1 + tan (x)/ + tan (x)*sec(x) + 4*tan (x)*\1 + tan (x)/ + 5*\1 + tan (x)/*sec(x)*tan(x)/ - (sec(x) + tan(x))*\2*\1 + tan (x)/ - tan (x)*sec(x) + 4*tan (x)*\1 + tan (x)/ - 5*\1 + tan (x)/*sec(x)*tan(x)/ - 3*\1 + tan (x) - sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/ + 3*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) - 2*\1 + tan (x)/*tan(x)/
$$- \left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) \left(2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 5 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \sec{\left(x \right)} + \tan^{3}{\left(x \right)} \sec{\left(x \right)}\right) - \left(\tan{\left(x \right)} + \sec{\left(x \right)}\right) \left(2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} - 5 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \sec{\left(x \right)} - \tan^{3}{\left(x \right)} \sec{\left(x \right)}\right) + 3 \left(- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1\right) - 3 \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} - \tan{\left(x \right)} \sec{\left(x \right)} + 1\right)$$