Mister Exam

Other calculators


y=root(1+x)sqrt(x+3)

Derivative of y=root(1+x)sqrt(x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _______   _______
\/ 1 + x *\/ x + 3 
x+1x+3\sqrt{x + 1} \sqrt{x + 3}
sqrt(1 + x)*sqrt(x + 3)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x+1f{\left(x \right)} = \sqrt{x + 1}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x+1u = x + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

      1. Differentiate x+1x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      12x+1\frac{1}{2 \sqrt{x + 1}}

    g(x)=x+3g{\left(x \right)} = \sqrt{x + 3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x+3u = x + 3.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x+3)\frac{d}{d x} \left(x + 3\right):

      1. Differentiate x+3x + 3 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 33 is zero.

        The result is: 11

      The result of the chain rule is:

      12x+3\frac{1}{2 \sqrt{x + 3}}

    The result is: x+12x+3+x+32x+1\frac{\sqrt{x + 1}}{2 \sqrt{x + 3}} + \frac{\sqrt{x + 3}}{2 \sqrt{x + 1}}

  2. Now simplify:

    x+2x+1x+3\frac{x + 2}{\sqrt{x + 1} \sqrt{x + 3}}


The answer is:

x+2x+1x+3\frac{x + 2}{\sqrt{x + 1} \sqrt{x + 3}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
   _______       _______ 
 \/ 1 + x      \/ x + 3  
----------- + -----------
    _______       _______
2*\/ x + 3    2*\/ 1 + x 
x+12x+3+x+32x+1\frac{\sqrt{x + 1}}{2 \sqrt{x + 3}} + \frac{\sqrt{x + 3}}{2 \sqrt{x + 1}}
The second derivative [src]
    _______      _______                       
  \/ 1 + x     \/ 3 + x              2         
- ---------- - ---------- + -------------------
         3/2          3/2     _______   _______
  (3 + x)      (1 + x)      \/ 1 + x *\/ 3 + x 
-----------------------------------------------
                       4                       
x+1(x+3)32+2x+1x+3x+3(x+1)324\frac{- \frac{\sqrt{x + 1}}{\left(x + 3\right)^{\frac{3}{2}}} + \frac{2}{\sqrt{x + 1} \sqrt{x + 3}} - \frac{\sqrt{x + 3}}{\left(x + 1\right)^{\frac{3}{2}}}}{4}
The third derivative [src]
  /  _______      _______                                               \
  |\/ 1 + x     \/ 3 + x              1                      1          |
3*|---------- + ---------- - -------------------- - --------------------|
  |       5/2          5/2          3/2   _______     _______        3/2|
  \(3 + x)      (1 + x)      (1 + x)   *\/ 3 + x    \/ 1 + x *(3 + x)   /
-------------------------------------------------------------------------
                                    8                                    
3(x+1(x+3)521x+1(x+3)321(x+1)32x+3+x+3(x+1)52)8\frac{3 \left(\frac{\sqrt{x + 1}}{\left(x + 3\right)^{\frac{5}{2}}} - \frac{1}{\sqrt{x + 1} \left(x + 3\right)^{\frac{3}{2}}} - \frac{1}{\left(x + 1\right)^{\frac{3}{2}} \sqrt{x + 3}} + \frac{\sqrt{x + 3}}{\left(x + 1\right)^{\frac{5}{2}}}\right)}{8}
The graph
Derivative of y=root(1+x)sqrt(x+3)