Mister Exam

Other calculators


y=root(1+x)sqrt(x+3)

Derivative of y=root(1+x)sqrt(x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _______   _______
\/ 1 + x *\/ x + 3 
$$\sqrt{x + 1} \sqrt{x + 3}$$
sqrt(1 + x)*sqrt(x + 3)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   _______       _______ 
 \/ 1 + x      \/ x + 3  
----------- + -----------
    _______       _______
2*\/ x + 3    2*\/ 1 + x 
$$\frac{\sqrt{x + 1}}{2 \sqrt{x + 3}} + \frac{\sqrt{x + 3}}{2 \sqrt{x + 1}}$$
The second derivative [src]
    _______      _______                       
  \/ 1 + x     \/ 3 + x              2         
- ---------- - ---------- + -------------------
         3/2          3/2     _______   _______
  (3 + x)      (1 + x)      \/ 1 + x *\/ 3 + x 
-----------------------------------------------
                       4                       
$$\frac{- \frac{\sqrt{x + 1}}{\left(x + 3\right)^{\frac{3}{2}}} + \frac{2}{\sqrt{x + 1} \sqrt{x + 3}} - \frac{\sqrt{x + 3}}{\left(x + 1\right)^{\frac{3}{2}}}}{4}$$
The third derivative [src]
  /  _______      _______                                               \
  |\/ 1 + x     \/ 3 + x              1                      1          |
3*|---------- + ---------- - -------------------- - --------------------|
  |       5/2          5/2          3/2   _______     _______        3/2|
  \(3 + x)      (1 + x)      (1 + x)   *\/ 3 + x    \/ 1 + x *(3 + x)   /
-------------------------------------------------------------------------
                                    8                                    
$$\frac{3 \left(\frac{\sqrt{x + 1}}{\left(x + 3\right)^{\frac{5}{2}}} - \frac{1}{\sqrt{x + 1} \left(x + 3\right)^{\frac{3}{2}}} - \frac{1}{\left(x + 1\right)^{\frac{3}{2}} \sqrt{x + 3}} + \frac{\sqrt{x + 3}}{\left(x + 1\right)^{\frac{5}{2}}}\right)}{8}$$
The graph
Derivative of y=root(1+x)sqrt(x+3)