Mister Exam

Other calculators


y=log(x^3+1)

Derivative of y=log(x^3+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3    \
log\x  + 1/
$$\log{\left(x^{3} + 1 \right)}$$
log(x^3 + 1)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    2 
 3*x  
------
 3    
x  + 1
$$\frac{3 x^{2}}{x^{3} + 1}$$
The second derivative [src]
    /        3 \
    |     3*x  |
3*x*|2 - ------|
    |         3|
    \    1 + x /
----------------
          3     
     1 + x      
$$\frac{3 x \left(- \frac{3 x^{3}}{x^{3} + 1} + 2\right)}{x^{3} + 1}$$
The third derivative [src]
  /        3          6  \
  |     9*x        9*x   |
6*|1 - ------ + ---------|
  |         3           2|
  |    1 + x    /     3\ |
  \             \1 + x / /
--------------------------
               3          
          1 + x           
$$\frac{6 \left(\frac{9 x^{6}}{\left(x^{3} + 1\right)^{2}} - \frac{9 x^{3}}{x^{3} + 1} + 1\right)}{x^{3} + 1}$$
The graph
Derivative of y=log(x^3+1)