Mister Exam

Other calculators


y=log^8(x^2+3x)

Derivative of y=log^8(x^2+3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   8/ 2      \
log \x  + 3*x/
$$\log{\left(x^{2} + 3 x \right)}^{8}$$
log(x^2 + 3*x)^8
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     7/ 2      \          
8*log \x  + 3*x/*(3 + 2*x)
--------------------------
          2               
         x  + 3*x         
$$\frac{8 \left(2 x + 3\right) \log{\left(x^{2} + 3 x \right)}^{7}}{x^{2} + 3 x}$$
The second derivative [src]
                  /                              2            2               \
     6            |                   7*(3 + 2*x)    (3 + 2*x) *log(x*(3 + x))|
8*log (x*(3 + x))*|2*log(x*(3 + x)) + ------------ - -------------------------|
                  \                    x*(3 + x)             x*(3 + x)        /
-------------------------------------------------------------------------------
                                   x*(3 + x)                                   
$$\frac{8 \left(2 \log{\left(x \left(x + 3\right) \right)} - \frac{\left(2 x + 3\right)^{2} \log{\left(x \left(x + 3\right) \right)}}{x \left(x + 3\right)} + \frac{7 \left(2 x + 3\right)^{2}}{x \left(x + 3\right)}\right) \log{\left(x \left(x + 3\right) \right)}^{6}}{x \left(x + 3\right)}$$
The third derivative [src]
                            /                                                      2               2                             2    2           \
     5                      |       2                                  42*(3 + 2*x)    21*(3 + 2*x) *log(x*(3 + x))   2*(3 + 2*x) *log (x*(3 + x))|
8*log (x*(3 + x))*(3 + 2*x)*|- 6*log (x*(3 + x)) + 42*log(x*(3 + x)) + ------------- - ---------------------------- + ----------------------------|
                            \                                            x*(3 + x)              x*(3 + x)                      x*(3 + x)          /
---------------------------------------------------------------------------------------------------------------------------------------------------
                                                                     2        2                                                                    
                                                                    x *(3 + x)                                                                     
$$\frac{8 \left(2 x + 3\right) \left(- 6 \log{\left(x \left(x + 3\right) \right)}^{2} + 42 \log{\left(x \left(x + 3\right) \right)} + \frac{2 \left(2 x + 3\right)^{2} \log{\left(x \left(x + 3\right) \right)}^{2}}{x \left(x + 3\right)} - \frac{21 \left(2 x + 3\right)^{2} \log{\left(x \left(x + 3\right) \right)}}{x \left(x + 3\right)} + \frac{42 \left(2 x + 3\right)^{2}}{x \left(x + 3\right)}\right) \log{\left(x \left(x + 3\right) \right)}^{5}}{x^{2} \left(x + 3\right)^{2}}$$
The graph
Derivative of y=log^8(x^2+3x)