8/ 2 \ log \x + 3*x/
log(x^2 + 3*x)^8
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
7/ 2 \ 8*log \x + 3*x/*(3 + 2*x) -------------------------- 2 x + 3*x
/ 2 2 \ 6 | 7*(3 + 2*x) (3 + 2*x) *log(x*(3 + x))| 8*log (x*(3 + x))*|2*log(x*(3 + x)) + ------------ - -------------------------| \ x*(3 + x) x*(3 + x) / ------------------------------------------------------------------------------- x*(3 + x)
/ 2 2 2 2 \ 5 | 2 42*(3 + 2*x) 21*(3 + 2*x) *log(x*(3 + x)) 2*(3 + 2*x) *log (x*(3 + x))| 8*log (x*(3 + x))*(3 + 2*x)*|- 6*log (x*(3 + x)) + 42*log(x*(3 + x)) + ------------- - ---------------------------- + ----------------------------| \ x*(3 + x) x*(3 + x) x*(3 + x) / --------------------------------------------------------------------------------------------------------------------------------------------------- 2 2 x *(3 + x)