Mister Exam

Other calculators


y=log7(x^2-8x+7)

Derivative of y=log7(x^2-8x+7)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2          \
log\x  - 8*x + 7/
-----------------
      log(7)     
$$\frac{\log{\left(x^{2} - 8 x + 7 \right)}}{\log{\left(7 \right)}}$$
  /   / 2          \\
d |log\x  - 8*x + 7/|
--|-----------------|
dx\      log(7)     /
$$\frac{d}{d x} \frac{\log{\left(x^{2} - 8 x + 7 \right)}}{\log{\left(7 \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          So, the result is:

        3. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       -8 + 2*x      
---------------------
/ 2          \       
\x  - 8*x + 7/*log(7)
$$\frac{2 x - 8}{\left(x^{2} - 8 x + 7\right) \log{\left(7 \right)}}$$
The second derivative [src]
   /               2 \
   |     2*(-4 + x)  |
-2*|-1 + ------------|
   |          2      |
   \     7 + x  - 8*x/
----------------------
/     2      \        
\7 + x  - 8*x/*log(7) 
$$- \frac{2 \cdot \left(\frac{2 \left(x - 4\right)^{2}}{x^{2} - 8 x + 7} - 1\right)}{\left(x^{2} - 8 x + 7\right) \log{\left(7 \right)}}$$
The third derivative [src]
           /               2 \
           |     4*(-4 + x)  |
4*(-4 + x)*|-3 + ------------|
           |          2      |
           \     7 + x  - 8*x/
------------------------------
                  2           
    /     2      \            
    \7 + x  - 8*x/ *log(7)    
$$\frac{4 \left(x - 4\right) \left(\frac{4 \left(x - 4\right)^{2}}{x^{2} - 8 x + 7} - 3\right)}{\left(x^{2} - 8 x + 7\right)^{2} \log{\left(7 \right)}}$$
The graph
Derivative of y=log7(x^2-8x+7)