log(x) ------ + sin(x) log(6)
log(x)/log(6) + sin(x)
Differentiate log(x)log(6)+sin(x)\frac{\log{\left(x \right)}}{\log{\left(6 \right)}} + \sin{\left(x \right)}log(6)log(x)+sin(x) term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
So, the result is: 1xlog(6)\frac{1}{x \log{\left(6 \right)}}xlog(6)1
The derivative of sine is cosine:
The result is: cos(x)+1xlog(6)\cos{\left(x \right)} + \frac{1}{x \log{\left(6 \right)}}cos(x)+xlog(6)1
The answer is:
1 -------- + cos(x) x*log(6)
/ 1 \ -|--------- + sin(x)| | 2 | \x *log(6) /
2 -cos(x) + --------- 3 x *log(6)