Mister Exam

Other calculators


y=(log3(sinx)^2)

Derivative of y=(log3(sinx)^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2
/log(sin(x))\ 
|-----------| 
\   log(3)  / 
$$\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(3 \right)}}\right)^{2}$$
  /             2\
d |/log(sin(x))\ |
--||-----------| |
dx\\   log(3)  / /
$$\frac{d}{d x} \left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(3 \right)}}\right)^{2}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
     2               
  log (sin(x))       
2*------------*cos(x)
       2             
    log (3)          
---------------------
  log(sin(x))*sin(x) 
$$\frac{2 \frac{\log{\left(\sin{\left(x \right)} \right)}^{2}}{\log{\left(3 \right)}^{2}} \cos{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)}}$$
The second derivative [src]
  /                  2         2               \
  |               cos (x)   cos (x)*log(sin(x))|
2*|-log(sin(x)) + ------- - -------------------|
  |                  2               2         |
  \               sin (x)         sin (x)      /
------------------------------------------------
                       2                        
                    log (3)                     
$$\frac{2 \left(- \log{\left(\sin{\left(x \right)} \right)} - \frac{\log{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)}{\log{\left(3 \right)}^{2}}$$
The third derivative [src]
  /                          2           2               \       
  |                     3*cos (x)   2*cos (x)*log(sin(x))|       
2*|-3 + 2*log(sin(x)) - --------- + ---------------------|*cos(x)
  |                         2                 2          |       
  \                      sin (x)           sin (x)       /       
-----------------------------------------------------------------
                             2                                   
                          log (3)*sin(x)                         
$$\frac{2 \cdot \left(2 \log{\left(\sin{\left(x \right)} \right)} + \frac{2 \log{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 3 - \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\log{\left(3 \right)}^{2} \sin{\left(x \right)}}$$
The graph
Derivative of y=(log3(sinx)^2)