2 /log(sin(x))\ |-----------| \ log(3) /
/ 2\ d |/log(sin(x))\ | --||-----------| | dx\\ log(3) / /
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
2
log (sin(x))
2*------------*cos(x)
2
log (3)
---------------------
log(sin(x))*sin(x)
/ 2 2 \
| cos (x) cos (x)*log(sin(x))|
2*|-log(sin(x)) + ------- - -------------------|
| 2 2 |
\ sin (x) sin (x) /
------------------------------------------------
2
log (3)
/ 2 2 \
| 3*cos (x) 2*cos (x)*log(sin(x))|
2*|-3 + 2*log(sin(x)) - --------- + ---------------------|*cos(x)
| 2 2 |
\ sin (x) sin (x) /
-----------------------------------------------------------------
2
log (3)*sin(x)