Mister Exam

Derivative of y=log16log5tgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(16*log(5*tan(x)))
$$\log{\left(16 \log{\left(5 \tan{\left(x \right)} \right)} \right)}$$
log(16*log(5*tan(x)))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. The derivative of sine is cosine:

            To find :

            1. The derivative of cosine is negative sine:

            Now plug in to the quotient rule:

          So, the result is:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
             2        
    5 + 5*tan (x)     
----------------------
5*log(5*tan(x))*tan(x)
$$\frac{5 \tan^{2}{\left(x \right)} + 5}{5 \log{\left(5 \tan{\left(x \right)} \right)} \tan{\left(x \right)}}$$
The second derivative [src]
              /           2                  2        \
/       2   \ |    1 + tan (x)        1 + tan (x)     |
\1 + tan (x)/*|2 - ----------- - ---------------------|
              |         2                         2   |
              \      tan (x)     log(5*tan(x))*tan (x)/
-------------------------------------------------------
                     log(5*tan(x))                     
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(- \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(5 \tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}} + 2\right)}{\log{\left(5 \tan{\left(x \right)} \right)}}$$
The third derivative [src]
              /                                            2                                            2                        2  \
              |             /       2   \     /       2   \        /       2   \           /       2   \            /       2   \   |
/       2   \ |           4*\1 + tan (x)/   2*\1 + tan (x)/      6*\1 + tan (x)/         2*\1 + tan (x)/          3*\1 + tan (x)/   |
\1 + tan (x)/*|4*tan(x) - --------------- + ---------------- - -------------------- + ---------------------- + ---------------------|
              |                tan(x)              3           log(5*tan(x))*tan(x)      2              3                       3   |
              \                                 tan (x)                               log (5*tan(x))*tan (x)   log(5*tan(x))*tan (x)/
-------------------------------------------------------------------------------------------------------------------------------------
                                                            log(5*tan(x))                                                            
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(5 \tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(5 \tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(5 \tan{\left(x \right)} \right)} \tan{\left(x \right)}} + 4 \tan{\left(x \right)}\right)}{\log{\left(5 \tan{\left(x \right)} \right)}}$$
The graph
Derivative of y=log16log5tgx