Mister Exam

Derivative of y=lnx²+2x-e^(-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2             -2*x
log (x) + 2*x - E    
(2x+log(x)2)e2x\left(2 x + \log{\left(x \right)}^{2}\right) - e^{- 2 x}
log(x)^2 + 2*x - E^(-2*x)
Detail solution
  1. Differentiate (2x+log(x)2)e2x\left(2 x + \log{\left(x \right)}^{2}\right) - e^{- 2 x} term by term:

    1. Differentiate 2x+log(x)22 x + \log{\left(x \right)}^{2} term by term:

      1. Let u=log(x)u = \log{\left(x \right)}.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        The result of the chain rule is:

        2log(x)x\frac{2 \log{\left(x \right)}}{x}

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result is: 2+2log(x)x2 + \frac{2 \log{\left(x \right)}}{x}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2xu = - 2 x.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx(2x)\frac{d}{d x} \left(- 2 x\right):

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 2-2

        The result of the chain rule is:

        2e2x- 2 e^{- 2 x}

      So, the result is: 2e2x2 e^{- 2 x}

    The result is: 2+2e2x+2log(x)x2 + 2 e^{- 2 x} + \frac{2 \log{\left(x \right)}}{x}


The answer is:

2+2e2x+2log(x)x2 + 2 e^{- 2 x} + \frac{2 \log{\left(x \right)}}{x}

The graph
02468-8-6-4-2-1010-20000000002000000000
The first derivative [src]
       -2*x   2*log(x)
2 + 2*e     + --------
                 x    
2+2e2x+2log(x)x2 + 2 e^{- 2 x} + \frac{2 \log{\left(x \right)}}{x}
The second derivative [src]
  /1       -2*x   log(x)\
2*|-- - 2*e     - ------|
  | 2                2  |
  \x                x   /
2(2e2xlog(x)x2+1x2)2 \left(- 2 e^{- 2 x} - \frac{\log{\left(x \right)}}{x^{2}} + \frac{1}{x^{2}}\right)
The third derivative [src]
  /  3       -2*x   2*log(x)\
2*|- -- + 4*e     + --------|
  |   3                 3   |
  \  x                 x    /
2(4e2x+2log(x)x33x3)2 \left(4 e^{- 2 x} + \frac{2 \log{\left(x \right)}}{x^{3}} - \frac{3}{x^{3}}\right)
The graph
Derivative of y=lnx²+2x-e^(-2x)