Mister Exam

Derivative of y=lntg(2x+5)=ln5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(tan(2*x + 5))
log(tan(2x+5))\log{\left(\tan{\left(2 x + 5 \right)} \right)}
log(tan(2*x + 5))
Detail solution
  1. Let u=tan(2x+5)u = \tan{\left(2 x + 5 \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxtan(2x+5)\frac{d}{d x} \tan{\left(2 x + 5 \right)}:

    1. Rewrite the function to be differentiated:

      tan(2x+5)=sin(2x+5)cos(2x+5)\tan{\left(2 x + 5 \right)} = \frac{\sin{\left(2 x + 5 \right)}}{\cos{\left(2 x + 5 \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(2x+5)f{\left(x \right)} = \sin{\left(2 x + 5 \right)} and g(x)=cos(2x+5)g{\left(x \right)} = \cos{\left(2 x + 5 \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=2x+5u = 2 x + 5.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(2x+5)\frac{d}{d x} \left(2 x + 5\right):

        1. Differentiate 2x+52 x + 5 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          2. The derivative of the constant 55 is zero.

          The result is: 22

        The result of the chain rule is:

        2cos(2x+5)2 \cos{\left(2 x + 5 \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2x+5u = 2 x + 5.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(2x+5)\frac{d}{d x} \left(2 x + 5\right):

        1. Differentiate 2x+52 x + 5 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          2. The derivative of the constant 55 is zero.

          The result is: 22

        The result of the chain rule is:

        2sin(2x+5)- 2 \sin{\left(2 x + 5 \right)}

      Now plug in to the quotient rule:

      2sin2(2x+5)+2cos2(2x+5)cos2(2x+5)\frac{2 \sin^{2}{\left(2 x + 5 \right)} + 2 \cos^{2}{\left(2 x + 5 \right)}}{\cos^{2}{\left(2 x + 5 \right)}}

    The result of the chain rule is:

    2sin2(2x+5)+2cos2(2x+5)cos2(2x+5)tan(2x+5)\frac{2 \sin^{2}{\left(2 x + 5 \right)} + 2 \cos^{2}{\left(2 x + 5 \right)}}{\cos^{2}{\left(2 x + 5 \right)} \tan{\left(2 x + 5 \right)}}

  4. Now simplify:

    2cos2(2x+5)tan(2x+5)\frac{2}{\cos^{2}{\left(2 x + 5 \right)} \tan{\left(2 x + 5 \right)}}


The answer is:

2cos2(2x+5)tan(2x+5)\frac{2}{\cos^{2}{\left(2 x + 5 \right)} \tan{\left(2 x + 5 \right)}}

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
         2         
2 + 2*tan (2*x + 5)
-------------------
    tan(2*x + 5)   
2tan2(2x+5)+2tan(2x+5)\frac{2 \tan^{2}{\left(2 x + 5 \right)} + 2}{\tan{\left(2 x + 5 \right)}}
The second derivative [src]
  /                                         2\
  |                      /       2         \ |
  |         2            \1 + tan (5 + 2*x)/ |
4*|2 + 2*tan (5 + 2*x) - --------------------|
  |                            2             |
  \                         tan (5 + 2*x)    /
4((tan2(2x+5)+1)2tan2(2x+5)+2tan2(2x+5)+2)4 \left(- \frac{\left(\tan^{2}{\left(2 x + 5 \right)} + 1\right)^{2}}{\tan^{2}{\left(2 x + 5 \right)}} + 2 \tan^{2}{\left(2 x + 5 \right)} + 2\right)
The third derivative [src]
                       /                                    2                        \
                       |                 /       2         \      /       2         \|
   /       2         \ |                 \1 + tan (5 + 2*x)/    2*\1 + tan (5 + 2*x)/|
16*\1 + tan (5 + 2*x)/*|2*tan(5 + 2*x) + -------------------- - ---------------------|
                       |                       3                     tan(5 + 2*x)    |
                       \                    tan (5 + 2*x)                            /
16(tan2(2x+5)+1)((tan2(2x+5)+1)2tan3(2x+5)2(tan2(2x+5)+1)tan(2x+5)+2tan(2x+5))16 \left(\tan^{2}{\left(2 x + 5 \right)} + 1\right) \left(\frac{\left(\tan^{2}{\left(2 x + 5 \right)} + 1\right)^{2}}{\tan^{3}{\left(2 x + 5 \right)}} - \frac{2 \left(\tan^{2}{\left(2 x + 5 \right)} + 1\right)}{\tan{\left(2 x + 5 \right)}} + 2 \tan{\left(2 x + 5 \right)}\right)
The graph
Derivative of y=lntg(2x+5)=ln5