Mister Exam

Other calculators


y=ln(2^x+3^x)

Derivative of y=ln(2^x+3^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x    x\
log\2  + 3 /
$$\log{\left(2^{x} + 3^{x} \right)}$$
log(2^x + 3^x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
 x           x       
2 *log(2) + 3 *log(3)
---------------------
        x    x       
       2  + 3        
$$\frac{2^{x} \log{\left(2 \right)} + 3^{x} \log{\left(3 \right)}}{2^{x} + 3^{x}}$$
The second derivative [src]
                                                 2
                          / x           x       \ 
 x    2       x    2      \2 *log(2) + 3 *log(3)/ 
2 *log (2) + 3 *log (3) - ------------------------
                                   x    x         
                                  2  + 3          
--------------------------------------------------
                      x    x                      
                     2  + 3                       
$$\frac{2^{x} \log{\left(2 \right)}^{2} + 3^{x} \log{\left(3 \right)}^{2} - \frac{\left(2^{x} \log{\left(2 \right)} + 3^{x} \log{\left(3 \right)}\right)^{2}}{2^{x} + 3^{x}}}{2^{x} + 3^{x}}$$
The third derivative [src]
                                                   3                                                      
                            / x           x       \      / x    2       x    2   \ / x           x       \
 x    3       x    3      2*\2 *log(2) + 3 *log(3)/    3*\2 *log (2) + 3 *log (3)/*\2 *log(2) + 3 *log(3)/
2 *log (2) + 3 *log (3) + -------------------------- - ---------------------------------------------------
                                           2                                  x    x                      
                                  / x    x\                                  2  + 3                       
                                  \2  + 3 /                                                               
----------------------------------------------------------------------------------------------------------
                                                  x    x                                                  
                                                 2  + 3                                                   
$$\frac{2^{x} \log{\left(2 \right)}^{3} + 3^{x} \log{\left(3 \right)}^{3} - \frac{3 \left(2^{x} \log{\left(2 \right)} + 3^{x} \log{\left(3 \right)}\right) \left(2^{x} \log{\left(2 \right)}^{2} + 3^{x} \log{\left(3 \right)}^{2}\right)}{2^{x} + 3^{x}} + \frac{2 \left(2^{x} \log{\left(2 \right)} + 3^{x} \log{\left(3 \right)}\right)^{3}}{\left(2^{x} + 3^{x}\right)^{2}}}{2^{x} + 3^{x}}$$
The graph
Derivative of y=ln(2^x+3^x)