Mister Exam

Other calculators


y=ln^2((x^2)-1)

Derivative of y=ln^2((x^2)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 2    \
log \x  - 1/
log(x21)2\log{\left(x^{2} - 1 \right)}^{2}
d /   2/ 2    \\
--\log \x  - 1//
dx              
ddxlog(x21)2\frac{d}{d x} \log{\left(x^{2} - 1 \right)}^{2}
Detail solution
  1. Let u=log(x21)u = \log{\left(x^{2} - 1 \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxlog(x21)\frac{d}{d x} \log{\left(x^{2} - 1 \right)}:

    1. Let u=x21u = x^{2} - 1.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x21)\frac{d}{d x} \left(x^{2} - 1\right):

      1. Differentiate x21x^{2} - 1 term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

        The result is: 2x2 x

      The result of the chain rule is:

      2xx21\frac{2 x}{x^{2} - 1}

    The result of the chain rule is:

    4xlog(x21)x21\frac{4 x \log{\left(x^{2} - 1 \right)}}{x^{2} - 1}

  4. Now simplify:

    4xlog(x21)x21\frac{4 x \log{\left(x^{2} - 1 \right)}}{x^{2} - 1}


The answer is:

4xlog(x21)x21\frac{4 x \log{\left(x^{2} - 1 \right)}}{x^{2} - 1}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
       / 2    \
4*x*log\x  - 1/
---------------
      2        
     x  - 1    
4xlog(x21)x21\frac{4 x \log{\left(x^{2} - 1 \right)}}{x^{2} - 1}
The second derivative [src]
  /     2       2    /      2\               \
  |  2*x     2*x *log\-1 + x /      /      2\|
4*|------- - ----------------- + log\-1 + x /|
  |      2              2                    |
  \-1 + x         -1 + x                     /
----------------------------------------------
                         2                    
                   -1 + x                     
4(2x2log(x21)x21+2x2x21+log(x21))x21\frac{4 \left(- \frac{2 x^{2} \log{\left(x^{2} - 1 \right)}}{x^{2} - 1} + \frac{2 x^{2}}{x^{2} - 1} + \log{\left(x^{2} - 1 \right)}\right)}{x^{2} - 1}
The third derivative [src]
    /                          2       2    /      2\\
    |         /      2\     6*x     4*x *log\-1 + x /|
8*x*|3 - 3*log\-1 + x / - ------- + -----------------|
    |                           2              2     |
    \                     -1 + x         -1 + x      /
------------------------------------------------------
                               2                      
                      /      2\                       
                      \-1 + x /                       
8x(4x2log(x21)x216x2x213log(x21)+3)(x21)2\frac{8 x \left(\frac{4 x^{2} \log{\left(x^{2} - 1 \right)}}{x^{2} - 1} - \frac{6 x^{2}}{x^{2} - 1} - 3 \log{\left(x^{2} - 1 \right)} + 3\right)}{\left(x^{2} - 1\right)^{2}}
The graph
Derivative of y=ln^2((x^2)-1)