Mister Exam

Other calculators


y=ln^2((x^2)-1)

Derivative of y=ln^2((x^2)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 2    \
log \x  - 1/
$$\log{\left(x^{2} - 1 \right)}^{2}$$
d /   2/ 2    \\
--\log \x  - 1//
dx              
$$\frac{d}{d x} \log{\left(x^{2} - 1 \right)}^{2}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 2    \
4*x*log\x  - 1/
---------------
      2        
     x  - 1    
$$\frac{4 x \log{\left(x^{2} - 1 \right)}}{x^{2} - 1}$$
The second derivative [src]
  /     2       2    /      2\               \
  |  2*x     2*x *log\-1 + x /      /      2\|
4*|------- - ----------------- + log\-1 + x /|
  |      2              2                    |
  \-1 + x         -1 + x                     /
----------------------------------------------
                         2                    
                   -1 + x                     
$$\frac{4 \left(- \frac{2 x^{2} \log{\left(x^{2} - 1 \right)}}{x^{2} - 1} + \frac{2 x^{2}}{x^{2} - 1} + \log{\left(x^{2} - 1 \right)}\right)}{x^{2} - 1}$$
The third derivative [src]
    /                          2       2    /      2\\
    |         /      2\     6*x     4*x *log\-1 + x /|
8*x*|3 - 3*log\-1 + x / - ------- + -----------------|
    |                           2              2     |
    \                     -1 + x         -1 + x      /
------------------------------------------------------
                               2                      
                      /      2\                       
                      \-1 + x /                       
$$\frac{8 x \left(\frac{4 x^{2} \log{\left(x^{2} - 1 \right)}}{x^{2} - 1} - \frac{6 x^{2}}{x^{2} - 1} - 3 \log{\left(x^{2} - 1 \right)} + 3\right)}{\left(x^{2} - 1\right)^{2}}$$
The graph
Derivative of y=ln^2((x^2)-1)