Mister Exam

Other calculators


y=ln^2*(tg10*x)

Derivative of y=ln^2*(tg10*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2           
log (tan(10*x))
$$\log{\left(\tan{\left(10 x \right)} \right)}^{2}$$
log(tan(10*x))^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /           2      \               
2*\10 + 10*tan (10*x)/*log(tan(10*x))
-------------------------------------
              tan(10*x)              
$$\frac{2 \left(10 \tan^{2}{\left(10 x \right)} + 10\right) \log{\left(\tan{\left(10 x \right)} \right)}}{\tan{\left(10 x \right)}}$$
The second derivative [src]
                     /                          2         /       2      \               \
    /       2      \ |                   1 + tan (10*x)   \1 + tan (10*x)/*log(tan(10*x))|
200*\1 + tan (10*x)/*|2*log(tan(10*x)) + -------------- - -------------------------------|
                     |                        2                         2                |
                     \                     tan (10*x)                tan (10*x)          /
$$200 \left(\tan^{2}{\left(10 x \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(10 x \right)} + 1\right) \log{\left(\tan{\left(10 x \right)} \right)}}{\tan^{2}{\left(10 x \right)}} + \frac{\tan^{2}{\left(10 x \right)} + 1}{\tan^{2}{\left(10 x \right)}} + 2 \log{\left(\tan{\left(10 x \right)} \right)}\right)$$
The third derivative [src]
                      /                    2                                                                                                           2               \
                      |    /       2      \                                   /       2      \     /       2      \                    /       2      \                |
     /       2      \ |  3*\1 + tan (10*x)/                                 6*\1 + tan (10*x)/   4*\1 + tan (10*x)/*log(tan(10*x))   2*\1 + tan (10*x)/ *log(tan(10*x))|
2000*\1 + tan (10*x)/*|- ------------------- + 4*log(tan(10*x))*tan(10*x) + ------------------ - --------------------------------- + ----------------------------------|
                      |          3                                              tan(10*x)                    tan(10*x)                              3                  |
                      \       tan (10*x)                                                                                                         tan (10*x)            /
$$2000 \left(\tan^{2}{\left(10 x \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(10 x \right)} + 1\right)^{2} \log{\left(\tan{\left(10 x \right)} \right)}}{\tan^{3}{\left(10 x \right)}} - \frac{3 \left(\tan^{2}{\left(10 x \right)} + 1\right)^{2}}{\tan^{3}{\left(10 x \right)}} - \frac{4 \left(\tan^{2}{\left(10 x \right)} + 1\right) \log{\left(\tan{\left(10 x \right)} \right)}}{\tan{\left(10 x \right)}} + \frac{6 \left(\tan^{2}{\left(10 x \right)} + 1\right)}{\tan{\left(10 x \right)}} + 4 \log{\left(\tan{\left(10 x \right)} \right)} \tan{\left(10 x \right)}\right)$$
The graph
Derivative of y=ln^2*(tg10*x)