3 log (x)*x
d / 3 \ --\log (x)*x/ dx
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
Apply the power rule: goes to
The result is:
Now simplify:
The answer is:
3 2 log (x) + 3*log (x)
3*(2 + log(x))*log(x) --------------------- x
/ 2 \ 3*\2 - 6*log(x) + 2*log (x) - 3*(-2 + log(x))*log(x)/ ----------------------------------------------------- 2 x