3 log (x)*sin(x) -------------- 3
(log(x)^3*sin(x))/3
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
The derivative of sine is cosine:
The result is:
So, the result is:
Now simplify:
The answer is:
3 2 log (x)*cos(x) log (x)*sin(x) -------------- + -------------- 3 x
/ 2 6*cos(x)*log(x) 3*(-2 + log(x))*sin(x)\ -|log (x)*sin(x) - --------------- + ----------------------|*log(x) | x 2 | \ x / -------------------------------------------------------------------- 3
3 2 / 2 \ log (x)*cos(x) 3*log (x)*sin(x) 2*\1 + log (x) - 3*log(x)/*sin(x) 3*(-2 + log(x))*cos(x)*log(x) - -------------- - ---------------- + --------------------------------- - ----------------------------- 3 x 3 2 x x