3
log (x)*sin(x)
--------------
3
(log(x)^3*sin(x))/3
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
The derivative of sine is cosine:
The result is:
So, the result is:
Now simplify:
The answer is:
3 2
log (x)*cos(x) log (x)*sin(x)
-------------- + --------------
3 x
/ 2 6*cos(x)*log(x) 3*(-2 + log(x))*sin(x)\
-|log (x)*sin(x) - --------------- + ----------------------|*log(x)
| x 2 |
\ x /
--------------------------------------------------------------------
3
3 2 / 2 \
log (x)*cos(x) 3*log (x)*sin(x) 2*\1 + log (x) - 3*log(x)/*sin(x) 3*(-2 + log(x))*cos(x)*log(x)
- -------------- - ---------------- + --------------------------------- - -----------------------------
3 x 3 2
x x