3 log (x)*sin(x)
log(x)^3*sin(x)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
2
3 3*log (x)*sin(x)
log (x)*cos(x) + ----------------
x
/ 2 3*(-2 + log(x))*sin(x) 6*cos(x)*log(x)\ |- log (x)*sin(x) - ---------------------- + ---------------|*log(x) | 2 x | \ x /
2 / 2 \
3 9*log (x)*sin(x) 6*\1 + log (x) - 3*log(x)/*sin(x) 9*(-2 + log(x))*cos(x)*log(x)
- log (x)*cos(x) - ---------------- + --------------------------------- - -----------------------------
x 3 2
x x