Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
; to find :
-
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
3
4 4*log (x)*sin(x)
log (x)*cos(x) + ----------------
x
$$\log{\left(x \right)}^{4} \cos{\left(x \right)} + \frac{4 \log{\left(x \right)}^{3} \sin{\left(x \right)}}{x}$$
The second derivative
[src]
2 / 2 4*(-3 + log(x))*sin(x) 8*cos(x)*log(x)\
log (x)*|- log (x)*sin(x) - ---------------------- + ---------------|
| 2 x |
\ x /
$$\left(- \log{\left(x \right)}^{2} \sin{\left(x \right)} + \frac{8 \log{\left(x \right)} \cos{\left(x \right)}}{x} - \frac{4 \left(\log{\left(x \right)} - 3\right) \sin{\left(x \right)}}{x^{2}}\right) \log{\left(x \right)}^{2}$$
The third derivative
[src]
/ 2 / 2 \ \
| 3 12*log (x)*sin(x) 4*\6 - 9*log(x) + 2*log (x)/*sin(x) 12*(-3 + log(x))*cos(x)*log(x)|
|- log (x)*cos(x) - ----------------- + ----------------------------------- - ------------------------------|*log(x)
| x 3 2 |
\ x x /
$$\left(- \log{\left(x \right)}^{3} \cos{\left(x \right)} - \frac{12 \log{\left(x \right)}^{2} \sin{\left(x \right)}}{x} - \frac{12 \left(\log{\left(x \right)} - 3\right) \log{\left(x \right)} \cos{\left(x \right)}}{x^{2}} + \frac{4 \cdot \left(2 \log{\left(x \right)}^{2} - 9 \log{\left(x \right)} + 6\right) \sin{\left(x \right)}}{x^{3}}\right) \log{\left(x \right)}$$