Mister Exam

Derivative of y=ln^4sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4          
log (x)*sin(x)
$$\log{\left(x \right)}^{4} \sin{\left(x \right)}$$
d /   4          \
--\log (x)*sin(x)/
dx                
$$\frac{d}{d x} \log{\left(x \right)}^{4} \sin{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      3          
   4             4*log (x)*sin(x)
log (x)*cos(x) + ----------------
                        x        
$$\log{\left(x \right)}^{4} \cos{\left(x \right)} + \frac{4 \log{\left(x \right)}^{3} \sin{\left(x \right)}}{x}$$
The second derivative [src]
   2    /     2             4*(-3 + log(x))*sin(x)   8*cos(x)*log(x)\
log (x)*|- log (x)*sin(x) - ---------------------- + ---------------|
        |                              2                    x       |
        \                             x                             /
$$\left(- \log{\left(x \right)}^{2} \sin{\left(x \right)} + \frac{8 \log{\left(x \right)} \cos{\left(x \right)}}{x} - \frac{4 \left(\log{\left(x \right)} - 3\right) \sin{\left(x \right)}}{x^{2}}\right) \log{\left(x \right)}^{2}$$
The third derivative [src]
/                         2               /                    2   \                                        \       
|     3             12*log (x)*sin(x)   4*\6 - 9*log(x) + 2*log (x)/*sin(x)   12*(-3 + log(x))*cos(x)*log(x)|       
|- log (x)*cos(x) - ----------------- + ----------------------------------- - ------------------------------|*log(x)
|                           x                             3                                  2              |       
\                                                        x                                  x               /       
$$\left(- \log{\left(x \right)}^{3} \cos{\left(x \right)} - \frac{12 \log{\left(x \right)}^{2} \sin{\left(x \right)}}{x} - \frac{12 \left(\log{\left(x \right)} - 3\right) \log{\left(x \right)} \cos{\left(x \right)}}{x^{2}} + \frac{4 \cdot \left(2 \log{\left(x \right)}^{2} - 9 \log{\left(x \right)} + 6\right) \sin{\left(x \right)}}{x^{3}}\right) \log{\left(x \right)}$$
The graph
Derivative of y=ln^4sinx