4 log (x)*sin(x)
d / 4 \ --\log (x)*sin(x)/ dx
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
3
4 4*log (x)*sin(x)
log (x)*cos(x) + ----------------
x
2 / 2 4*(-3 + log(x))*sin(x) 8*cos(x)*log(x)\
log (x)*|- log (x)*sin(x) - ---------------------- + ---------------|
| 2 x |
\ x /
/ 2 / 2 \ \ | 3 12*log (x)*sin(x) 4*\6 - 9*log(x) + 2*log (x)/*sin(x) 12*(-3 + log(x))*cos(x)*log(x)| |- log (x)*cos(x) - ----------------- + ----------------------------------- - ------------------------------|*log(x) | x 3 2 | \ x x /