/ 2 1\ log|tan (x) + -| \ 4/
log(tan(x)^2 + 1/4)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 \
\2 + 2*tan (x)/*tan(x)
----------------------
2 1
tan (x) + -
4
/ 2 / 2 \\
/ 2 \ | 2 8*tan (x)*\1 + tan (x)/|
8*\1 + tan (x)/*|1 + 3*tan (x) - -----------------------|
| 2 |
\ 1 + 4*tan (x) /
---------------------------------------------------------
2
1 + 4*tan (x)
/ 2 2 \
| / 2 \ 2 / 2 \ / 2 \ 2 |
/ 2 \ | 2 6*\1 + tan (x)/ 12*tan (x)*\1 + tan (x)/ 32*\1 + tan (x)/ *tan (x)|
32*\1 + tan (x)/*|2 + 3*tan (x) - ---------------- - ------------------------ + -------------------------|*tan(x)
| 2 2 2 |
| 1 + 4*tan (x) 1 + 4*tan (x) / 2 \ |
\ \1 + 4*tan (x)/ /
-----------------------------------------------------------------------------------------------------------------
2
1 + 4*tan (x)