Mister Exam

Other calculators


y=lnsqrt(2x-5x^2+1)

Derivative of y=lnsqrt(2x-5x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   ________________\
   |  /          2     |
log\\/  2*x - 5*x  + 1 /
log((5x2+2x)+1)\log{\left(\sqrt{\left(- 5 x^{2} + 2 x\right) + 1} \right)}
log(sqrt(2*x - 5*x^2 + 1))
Detail solution
  1. Let u=(5x2+2x)+1u = \sqrt{\left(- 5 x^{2} + 2 x\right) + 1}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx(5x2+2x)+1\frac{d}{d x} \sqrt{\left(- 5 x^{2} + 2 x\right) + 1}:

    1. Let u=(5x2+2x)+1u = \left(- 5 x^{2} + 2 x\right) + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx((5x2+2x)+1)\frac{d}{d x} \left(\left(- 5 x^{2} + 2 x\right) + 1\right):

      1. Differentiate (5x2+2x)+1\left(- 5 x^{2} + 2 x\right) + 1 term by term:

        1. Differentiate 5x2+2x- 5 x^{2} + 2 x term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: x2x^{2} goes to 2x2 x

            So, the result is: 10x- 10 x

          The result is: 210x2 - 10 x

        2. The derivative of the constant 11 is zero.

        The result is: 210x2 - 10 x

      The result of the chain rule is:

      210x2(5x2+2x)+1\frac{2 - 10 x}{2 \sqrt{\left(- 5 x^{2} + 2 x\right) + 1}}

    The result of the chain rule is:

    210x2((5x2+2x)+1)\frac{2 - 10 x}{2 \left(\left(- 5 x^{2} + 2 x\right) + 1\right)}

  4. Now simplify:

    15x5x2+2x+1\frac{1 - 5 x}{- 5 x^{2} + 2 x + 1}


The answer is:

15x5x2+2x+1\frac{1 - 5 x}{- 5 x^{2} + 2 x + 1}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
   1 - 5*x    
--------------
         2    
2*x - 5*x  + 1
15x(5x2+2x)+1\frac{1 - 5 x}{\left(- 5 x^{2} + 2 x\right) + 1}
The second derivative [src]
 /                2 \ 
 |    2*(-1 + 5*x)  | 
-|5 + --------------| 
 |           2      | 
 \    1 - 5*x  + 2*x/ 
----------------------
           2          
    1 - 5*x  + 2*x    
2(5x1)25x2+2x+1+55x2+2x+1- \frac{\frac{2 \left(5 x - 1\right)^{2}}{- 5 x^{2} + 2 x + 1} + 5}{- 5 x^{2} + 2 x + 1}
The third derivative [src]
              /                 2 \
              |     4*(-1 + 5*x)  |
-2*(-1 + 5*x)*|15 + --------------|
              |            2      |
              \     1 - 5*x  + 2*x/
-----------------------------------
                         2         
         /       2      \          
         \1 - 5*x  + 2*x/          
2(5x1)(4(5x1)25x2+2x+1+15)(5x2+2x+1)2- \frac{2 \left(5 x - 1\right) \left(\frac{4 \left(5 x - 1\right)^{2}}{- 5 x^{2} + 2 x + 1} + 15\right)}{\left(- 5 x^{2} + 2 x + 1\right)^{2}}
The graph
Derivative of y=lnsqrt(2x-5x^2+1)