Mister Exam

Other calculators


y=lnsqrt(1+2x)/(1-2x)

Derivative of y=lnsqrt(1+2x)/(1-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  _________\
log\\/ 1 + 2*x /
----------------
    1 - 2*x     
$$\frac{\log{\left(\sqrt{2 x + 1} \right)}}{1 - 2 x}$$
log(sqrt(1 + 2*x))/(1 - 2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                           /  _________\
         1            2*log\\/ 1 + 2*x /
------------------- + ------------------
(1 - 2*x)*(1 + 2*x)                2    
                          (1 - 2*x)     
$$\frac{1}{\left(1 - 2 x\right) \left(2 x + 1\right)} + \frac{2 \log{\left(\sqrt{2 x + 1} \right)}}{\left(1 - 2 x\right)^{2}}$$
The second derivative [src]
  /                  /  _________\                       \
  |    1        4*log\\/ 1 + 2*x /            2          |
2*|---------- - ------------------ + --------------------|
  |         2                2       (1 + 2*x)*(-1 + 2*x)|
  \(1 + 2*x)       (-1 + 2*x)                            /
----------------------------------------------------------
                         -1 + 2*x                         
$$\frac{2 \left(\frac{1}{\left(2 x + 1\right)^{2}} + \frac{2}{\left(2 x - 1\right) \left(2 x + 1\right)} - \frac{4 \log{\left(\sqrt{2 x + 1} \right)}}{\left(2 x - 1\right)^{2}}\right)}{2 x - 1}$$
The third derivative [src]
  /                                                                     /  _________\\
  |      2                  6                       3             12*log\\/ 1 + 2*x /|
4*|- ---------- - --------------------- - --------------------- + -------------------|
  |           3                       2            2                            3    |
  \  (1 + 2*x)    (1 + 2*x)*(-1 + 2*x)    (1 + 2*x) *(-1 + 2*x)       (-1 + 2*x)     /
--------------------------------------------------------------------------------------
                                       -1 + 2*x                                       
$$\frac{4 \left(- \frac{2}{\left(2 x + 1\right)^{3}} - \frac{3}{\left(2 x - 1\right) \left(2 x + 1\right)^{2}} - \frac{6}{\left(2 x - 1\right)^{2} \left(2 x + 1\right)} + \frac{12 \log{\left(\sqrt{2 x + 1} \right)}}{\left(2 x - 1\right)^{3}}\right)}{2 x - 1}$$
The graph
Derivative of y=lnsqrt(1+2x)/(1-2x)