Mister Exam

Other calculators


y=ln(sinx^2)

Derivative of y=ln(sinx^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2   \
log\sin (x)/
$$\log{\left(\sin^{2}{\left(x \right)} \right)}$$
d /   /   2   \\
--\log\sin (x)//
dx              
$$\frac{d}{d x} \log{\left(\sin^{2}{\left(x \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
2*cos(x)
--------
 sin(x) 
$$\frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
   /       2   \
   |    cos (x)|
-2*|1 + -------|
   |       2   |
   \    sin (x)/
$$- 2 \cdot \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
The third derivative [src]
  /       2   \       
  |    cos (x)|       
4*|1 + -------|*cos(x)
  |       2   |       
  \    sin (x)/       
----------------------
        sin(x)        
$$\frac{4 \cdot \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The graph
Derivative of y=ln(sinx^2)