Mister Exam

Derivative of y=ln(sin(ax)+cos(ax))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(a*x) + cos(a*x))
$$\log{\left(\sin{\left(a x \right)} + \cos{\left(a x \right)} \right)}$$
log(sin(a*x) + cos(a*x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      4. Let .

      5. The derivative of cosine is negative sine:

      6. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
a*cos(a*x) - a*sin(a*x)
-----------------------
  sin(a*x) + cos(a*x)  
$$\frac{- a \sin{\left(a x \right)} + a \cos{\left(a x \right)}}{\sin{\left(a x \right)} + \cos{\left(a x \right)}}$$
The second derivative [src]
    /                          2\
  2 |    (-cos(a*x) + sin(a*x)) |
-a *|1 + -----------------------|
    |                          2|
    \     (cos(a*x) + sin(a*x)) /
$$- a^{2} \left(\frac{\left(\sin{\left(a x \right)} - \cos{\left(a x \right)}\right)^{2}}{\left(\sin{\left(a x \right)} + \cos{\left(a x \right)}\right)^{2}} + 1\right)$$
The third derivative [src]
   /                             2\                       
 3 |     2*(-cos(a*x) + sin(a*x)) |                       
a *|-2 - -------------------------|*(-cos(a*x) + sin(a*x))
   |                            2 |                       
   \       (cos(a*x) + sin(a*x))  /                       
----------------------------------------------------------
                   cos(a*x) + sin(a*x)                    
$$\frac{a^{3} \left(- \frac{2 \left(\sin{\left(a x \right)} - \cos{\left(a x \right)}\right)^{2}}{\left(\sin{\left(a x \right)} + \cos{\left(a x \right)}\right)^{2}} - 2\right) \left(\sin{\left(a x \right)} - \cos{\left(a x \right)}\right)}{\sin{\left(a x \right)} + \cos{\left(a x \right)}}$$