Mister Exam

Derivative of y=lnsin³5x+ln²x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   35              2   
log  (sin(x)) + log (x)
$$\log{\left(x \right)}^{2} + \log{\left(\sin{\left(x \right)} \right)}^{35}$$
log(sin(x))^35 + log(x)^2
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result of the chain rule is:

    4. Let .

    5. Apply the power rule: goes to

    6. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                 34               
2*log(x)   35*log  (sin(x))*cos(x)
-------- + -----------------------
   x                sin(x)        
$$\frac{35 \log{\left(\sin{\left(x \right)} \right)}^{34} \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{2 \log{\left(x \right)}}{x}$$
The second derivative [src]
                                           2       34                   2       33        
        34           2    2*log(x)   35*cos (x)*log  (sin(x))   1190*cos (x)*log  (sin(x))
- 35*log  (sin(x)) + -- - -------- - ------------------------ + --------------------------
                      2       2                 2                           2             
                     x       x               sin (x)                     sin (x)          
$$- 35 \log{\left(\sin{\left(x \right)} \right)}^{34} - \frac{35 \log{\left(\sin{\left(x \right)} \right)}^{34} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{1190 \log{\left(\sin{\left(x \right)} \right)}^{33} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{2 \log{\left(x \right)}}{x^{2}} + \frac{2}{x^{2}}$$
The third derivative [src]
  /                          3       33                   33                        3       34                 34                           3       32        \
  |  3    2*log(x)   1785*cos (x)*log  (sin(x))   1785*log  (sin(x))*cos(x)   35*cos (x)*log  (sin(x))   35*log  (sin(x))*cos(x)   19635*cos (x)*log  (sin(x))|
2*|- -- + -------- - -------------------------- - ------------------------- + ------------------------ + ----------------------- + ---------------------------|
  |   3       3                  3                          sin(x)                       3                        sin(x)                        3             |
  \  x       x                sin (x)                                                 sin (x)                                                sin (x)          /
$$2 \left(\frac{35 \log{\left(\sin{\left(x \right)} \right)}^{34} \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{35 \log{\left(\sin{\left(x \right)} \right)}^{34} \cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}} - \frac{1785 \log{\left(\sin{\left(x \right)} \right)}^{33} \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{1785 \log{\left(\sin{\left(x \right)} \right)}^{33} \cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}} + \frac{19635 \log{\left(\sin{\left(x \right)} \right)}^{32} \cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}} + \frac{2 \log{\left(x \right)}}{x^{3}} - \frac{3}{x^{3}}\right)$$
The graph
Derivative of y=lnsin³5x+ln²x