35 2 log (sin(x)) + log (x)
log(sin(x))^35 + log(x)^2
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result of the chain rule is:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
34 2*log(x) 35*log (sin(x))*cos(x) -------- + ----------------------- x sin(x)
2 34 2 33 34 2 2*log(x) 35*cos (x)*log (sin(x)) 1190*cos (x)*log (sin(x)) - 35*log (sin(x)) + -- - -------- - ------------------------ + -------------------------- 2 2 2 2 x x sin (x) sin (x)
/ 3 33 33 3 34 34 3 32 \ | 3 2*log(x) 1785*cos (x)*log (sin(x)) 1785*log (sin(x))*cos(x) 35*cos (x)*log (sin(x)) 35*log (sin(x))*cos(x) 19635*cos (x)*log (sin(x))| 2*|- -- + -------- - -------------------------- - ------------------------- + ------------------------ + ----------------------- + ---------------------------| | 3 3 3 sin(x) 3 sin(x) 3 | \ x x sin (x) sin (x) sin (x) /