3 (log(sin(2*x)) + 4)
(log(sin(2*x)) + 4)^3
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2 6*(log(sin(2*x)) + 4) *cos(2*x) ------------------------------- sin(2*x)
/ 2 2 \ | 2*cos (2*x) cos (2*x)*(4 + log(sin(2*x)))| 12*(4 + log(sin(2*x)))*|-4 - log(sin(2*x)) + ----------- - -----------------------------| | 2 2 | \ sin (2*x) sin (2*x) /
/ 2 2 2 2 \ | 2 cos (2*x) (4 + log(sin(2*x))) *cos (2*x) 3*cos (2*x)*(4 + log(sin(2*x)))| 48*|-12 + (4 + log(sin(2*x))) - 3*log(sin(2*x)) + --------- + ------------------------------ - -------------------------------|*cos(2*x) | 2 2 2 | \ sin (2*x) sin (2*x) sin (2*x) / ----------------------------------------------------------------------------------------------------------------------------------------- sin(2*x)