Mister Exam

Other calculators


y=(lnsin2x+4)^3

Derivative of y=(lnsin2x+4)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                   3
(log(sin(2*x)) + 4) 
$$\left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right)^{3}$$
(log(sin(2*x)) + 4)^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      4. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                     2         
6*(log(sin(2*x)) + 4) *cos(2*x)
-------------------------------
            sin(2*x)           
$$\frac{6 \left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right)^{2} \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$
The second derivative [src]
                       /                          2           2                         \
                       |                     2*cos (2*x)   cos (2*x)*(4 + log(sin(2*x)))|
12*(4 + log(sin(2*x)))*|-4 - log(sin(2*x)) + ----------- - -----------------------------|
                       |                         2                      2               |
                       \                      sin (2*x)              sin (2*x)          /
$$12 \left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right) \left(- \frac{\left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right) \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}} - \log{\left(\sin{\left(2 x \right)} \right)} - 4 + \frac{2 \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}}\right)$$
The third derivative [src]
   /                                                  2                           2    2             2                         \         
   |                         2                     cos (2*x)   (4 + log(sin(2*x))) *cos (2*x)   3*cos (2*x)*(4 + log(sin(2*x)))|         
48*|-12 + (4 + log(sin(2*x)))  - 3*log(sin(2*x)) + --------- + ------------------------------ - -------------------------------|*cos(2*x)
   |                                                  2                     2                                 2                |         
   \                                               sin (2*x)             sin (2*x)                         sin (2*x)           /         
-----------------------------------------------------------------------------------------------------------------------------------------
                                                                 sin(2*x)                                                                
$$\frac{48 \left(\left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right)^{2} + \frac{\left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right)^{2} \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}} - \frac{3 \left(\log{\left(\sin{\left(2 x \right)} \right)} + 4\right) \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}} - 3 \log{\left(\sin{\left(2 x \right)} \right)} - 12 + \frac{\cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}}\right) \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$
The graph
Derivative of y=(lnsin2x+4)^3