Mister Exam

Derivative of y=ln(sin12x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(12*x))
$$\log{\left(\sin{\left(12 x \right)} \right)}$$
log(sin(12*x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
12*cos(12*x)
------------
 sin(12*x)  
$$\frac{12 \cos{\left(12 x \right)}}{\sin{\left(12 x \right)}}$$
The second derivative [src]
     /       2      \
     |    cos (12*x)|
-144*|1 + ----------|
     |       2      |
     \    sin (12*x)/
$$- 144 \left(1 + \frac{\cos^{2}{\left(12 x \right)}}{\sin^{2}{\left(12 x \right)}}\right)$$
The third derivative [src]
     /       2      \          
     |    cos (12*x)|          
3456*|1 + ----------|*cos(12*x)
     |       2      |          
     \    sin (12*x)/          
-------------------------------
           sin(12*x)           
$$\frac{3456 \left(1 + \frac{\cos^{2}{\left(12 x \right)}}{\sin^{2}{\left(12 x \right)}}\right) \cos{\left(12 x \right)}}{\sin{\left(12 x \right)}}$$
The graph
Derivative of y=ln(sin12x)