Mister Exam

Derivative of y=ln(sin12x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(12*x))
log(sin(12x))\log{\left(\sin{\left(12 x \right)} \right)}
log(sin(12*x))
Detail solution
  1. Let u=sin(12x)u = \sin{\left(12 x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxsin(12x)\frac{d}{d x} \sin{\left(12 x \right)}:

    1. Let u=12xu = 12 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx12x\frac{d}{d x} 12 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1212

      The result of the chain rule is:

      12cos(12x)12 \cos{\left(12 x \right)}

    The result of the chain rule is:

    12cos(12x)sin(12x)\frac{12 \cos{\left(12 x \right)}}{\sin{\left(12 x \right)}}

  4. Now simplify:

    12tan(12x)\frac{12}{\tan{\left(12 x \right)}}


The answer is:

12tan(12x)\frac{12}{\tan{\left(12 x \right)}}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
12*cos(12*x)
------------
 sin(12*x)  
12cos(12x)sin(12x)\frac{12 \cos{\left(12 x \right)}}{\sin{\left(12 x \right)}}
The second derivative [src]
     /       2      \
     |    cos (12*x)|
-144*|1 + ----------|
     |       2      |
     \    sin (12*x)/
144(1+cos2(12x)sin2(12x))- 144 \left(1 + \frac{\cos^{2}{\left(12 x \right)}}{\sin^{2}{\left(12 x \right)}}\right)
The third derivative [src]
     /       2      \          
     |    cos (12*x)|          
3456*|1 + ----------|*cos(12*x)
     |       2      |          
     \    sin (12*x)/          
-------------------------------
           sin(12*x)           
3456(1+cos2(12x)sin2(12x))cos(12x)sin(12x)\frac{3456 \left(1 + \frac{\cos^{2}{\left(12 x \right)}}{\sin^{2}{\left(12 x \right)}}\right) \cos{\left(12 x \right)}}{\sin{\left(12 x \right)}}
The graph
Derivative of y=ln(sin12x)