/ 1 \ log|---------------| | ________| | / 2 | \x + \/ x - 1 /
log(1/(x + sqrt(x^2 - 1)))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
x
-1 - -----------
________
/ 2
\/ x - 1
----------------
________
/ 2
x + \/ x - 1
2
/ x \ 2
|1 + ------------| x
| _________| -1 + -------
| / 2 | 2
\ \/ -1 + x / -1 + x
------------------- + ------------
_________ _________
/ 2 / 2
x + \/ -1 + x \/ -1 + x
----------------------------------
_________
/ 2
x + \/ -1 + x
/ 3 / 2 \\
| / x \ / 2 \ / x \ | x ||
|2*|1 + ------------| | x | 3*|1 + ------------|*|-1 + -------||
| | _________| 3*x*|-1 + -------| | _________| | 2||
| | / 2 | | 2| | / 2 | \ -1 + x /|
| \ \/ -1 + x / \ -1 + x / \ \/ -1 + x / |
-|--------------------- + ------------------ + -----------------------------------|
| 2 3/2 _________ / _________\ |
| / _________\ / 2\ / 2 | / 2 | |
| | / 2 | \-1 + x / \/ -1 + x *\x + \/ -1 + x / |
\ \x + \/ -1 + x / /
------------------------------------------------------------------------------------
_________
/ 2
x + \/ -1 + x