Mister Exam

Other calculators


y=ln(1/(x+sqrt((x^2)-1)))

Derivative of y=ln(1/(x+sqrt((x^2)-1)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /       1       \
log|---------------|
   |       ________|
   |      /  2     |
   \x + \/  x  - 1 /
$$\log{\left(\frac{1}{x + \sqrt{x^{2} - 1}} \right)}$$
log(1/(x + sqrt(x^2 - 1)))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          x     
-1 - -----------
        ________
       /  2     
     \/  x  - 1 
----------------
       ________ 
      /  2      
x + \/  x  - 1  
$$\frac{- \frac{x}{\sqrt{x^{2} - 1}} - 1}{x + \sqrt{x^{2} - 1}}$$
The second derivative [src]
                  2               
/         x      \             2  
|1 + ------------|            x   
|       _________|    -1 + -------
|      /       2 |               2
\    \/  -1 + x  /         -1 + x 
------------------- + ------------
         _________       _________
        /       2       /       2 
  x + \/  -1 + x      \/  -1 + x  
----------------------------------
                _________         
               /       2          
         x + \/  -1 + x           
$$\frac{\frac{\frac{x^{2}}{x^{2} - 1} - 1}{\sqrt{x^{2} - 1}} + \frac{\left(\frac{x}{\sqrt{x^{2} - 1}} + 1\right)^{2}}{x + \sqrt{x^{2} - 1}}}{x + \sqrt{x^{2} - 1}}$$
The third derivative [src]
 /                    3                                             /         2  \\ 
 |  /         x      \        /         2  \     /         x      \ |        x   || 
 |2*|1 + ------------|        |        x   |   3*|1 + ------------|*|-1 + -------|| 
 |  |       _________|    3*x*|-1 + -------|     |       _________| |           2|| 
 |  |      /       2 |        |           2|     |      /       2 | \     -1 + x /| 
 |  \    \/  -1 + x  /        \     -1 + x /     \    \/  -1 + x  /               | 
-|--------------------- + ------------------ + -----------------------------------| 
 |                   2                3/2           _________ /       _________\  | 
 | /       _________\        /      2\             /       2  |      /       2 |  | 
 | |      /       2 |        \-1 + x /           \/  -1 + x  *\x + \/  -1 + x  /  | 
 \ \x + \/  -1 + x  /                                                             / 
------------------------------------------------------------------------------------
                                         _________                                  
                                        /       2                                   
                                  x + \/  -1 + x                                    
$$- \frac{\frac{3 x \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right)^{\frac{3}{2}}} + \frac{3 \left(\frac{x}{\sqrt{x^{2} - 1}} + 1\right) \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{\left(x + \sqrt{x^{2} - 1}\right) \sqrt{x^{2} - 1}} + \frac{2 \left(\frac{x}{\sqrt{x^{2} - 1}} + 1\right)^{3}}{\left(x + \sqrt{x^{2} - 1}\right)^{2}}}{x + \sqrt{x^{2} - 1}}$$
The graph
Derivative of y=ln(1/(x+sqrt((x^2)-1)))