4 log(x)*sin (x)
d / 4 \ --\log(x)*sin (x)/ dx
Apply the product rule:
; to find :
The derivative of is .
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
4 sin (x) 3 ------- + 4*sin (x)*cos(x)*log(x) x
/ 2 \
2 | sin (x) / 2 2 \ 8*cos(x)*sin(x)|
sin (x)*|- ------- - 4*\sin (x) - 3*cos (x)/*log(x) + ---------------|
| 2 x |
\ x /
/ 3 / 2 2 \ 2 \ |sin (x) 6*\sin (x) - 3*cos (x)/*sin(x) 6*sin (x)*cos(x) / 2 2 \ | 2*|------- - ------------------------------ - ---------------- - 4*\- 3*cos (x) + 5*sin (x)/*cos(x)*log(x)|*sin(x) | 3 x 2 | \ x x /