Detail solution
-
Apply the product rule:
; to find :
-
The derivative of is .
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
4
sin (x) 3
------- + 4*sin (x)*cos(x)*log(x)
x
$$4 \log{\left(x \right)} \sin^{3}{\left(x \right)} \cos{\left(x \right)} + \frac{\sin^{4}{\left(x \right)}}{x}$$
The second derivative
[src]
/ 2 \
2 | sin (x) / 2 2 \ 8*cos(x)*sin(x)|
sin (x)*|- ------- - 4*\sin (x) - 3*cos (x)/*log(x) + ---------------|
| 2 x |
\ x /
$$\left(- 4 \left(\sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \log{\left(x \right)} + \frac{8 \sin{\left(x \right)} \cos{\left(x \right)}}{x} - \frac{\sin^{2}{\left(x \right)}}{x^{2}}\right) \sin^{2}{\left(x \right)}$$
The third derivative
[src]
/ 3 / 2 2 \ 2 \
|sin (x) 6*\sin (x) - 3*cos (x)/*sin(x) 6*sin (x)*cos(x) / 2 2 \ |
2*|------- - ------------------------------ - ---------------- - 4*\- 3*cos (x) + 5*sin (x)/*cos(x)*log(x)|*sin(x)
| 3 x 2 |
\ x x /
$$2 \left(- 4 \cdot \left(5 \sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \log{\left(x \right)} \cos{\left(x \right)} - \frac{6 \left(\sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{x} - \frac{6 \sin^{2}{\left(x \right)} \cos{\left(x \right)}}{x^{2}} + \frac{\sin^{3}{\left(x \right)}}{x^{3}}\right) \sin{\left(x \right)}$$