Mister Exam

Other calculators


y=(ln^3sinx)/cos2x

Derivative of y=(ln^3sinx)/cos2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3          
log (x)*sin(x)
--------------
   cos(2*x)   
$$\frac{\log{\left(x \right)}^{3} \sin{\left(x \right)}}{\cos{\left(2 x \right)}}$$
(log(x)^3*sin(x))/cos(2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      2                                      
   3             3*log (x)*sin(x)                            
log (x)*cos(x) + ----------------        3                   
                        x           2*log (x)*sin(x)*sin(2*x)
--------------------------------- + -------------------------
             cos(2*x)                          2             
                                            cos (2*x)        
$$\frac{\log{\left(x \right)}^{3} \cos{\left(x \right)} + \frac{3 \log{\left(x \right)}^{2} \sin{\left(x \right)}}{x}}{\cos{\left(2 x \right)}} + \frac{2 \log{\left(x \right)}^{3} \sin{\left(x \right)} \sin{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}$$
The second derivative [src]
/                                                                                                     /                3*sin(x)\                \       
|                                                      /         2     \                            4*|cos(x)*log(x) + --------|*log(x)*sin(2*x)|       
|     2             3*(-2 + log(x))*sin(x)        2    |    2*sin (2*x)|          6*cos(x)*log(x)     \                   x    /                |       
|- log (x)*sin(x) - ---------------------- + 4*log (x)*|1 + -----------|*sin(x) + --------------- + --------------------------------------------|*log(x)
|                              2                       |        2      |                 x                            cos(2*x)                  |       
\                             x                        \     cos (2*x) /                                                                        /       
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                        cos(2*x)                                                                        
$$\frac{\left(\frac{4 \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{x}\right) \log{\left(x \right)} \sin{\left(2 x \right)}}{\cos{\left(2 x \right)}} + 4 \left(\frac{2 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 1\right) \log{\left(x \right)}^{2} \sin{\left(x \right)} - \log{\left(x \right)}^{2} \sin{\left(x \right)} + \frac{6 \log{\left(x \right)} \cos{\left(x \right)}}{x} - \frac{3 \left(\log{\left(x \right)} - 2\right) \sin{\left(x \right)}}{x^{2}}\right) \log{\left(x \right)}}{\cos{\left(2 x \right)}}$$
The third derivative [src]
                                                                                                                                                                                                                                                              /         2     \                
                                                                                                                                                                      /   2             6*cos(x)*log(x)   3*(-2 + log(x))*sin(x)\                        3    |    6*sin (2*x)|                
                                                                                                                                                                    6*|log (x)*sin(x) - --------------- + ----------------------|*log(x)*sin(2*x)   8*log (x)*|5 + -----------|*sin(x)*sin(2*x)
                        2               /       2              \                     /         2     \                                                                |                        x                     2          |                             |        2      |                
     3             9*log (x)*sin(x)   6*\1 + log (x) - 3*log(x)/*sin(x)         2    |    2*sin (2*x)| /                3*sin(x)\   9*(-2 + log(x))*cos(x)*log(x)     \                                             x           /                             \     cos (2*x) /                
- log (x)*cos(x) - ---------------- + --------------------------------- + 12*log (x)*|1 + -----------|*|cos(x)*log(x) + --------| - ----------------------------- - ----------------------------------------------------------------------------- + -------------------------------------------
                          x                            3                             |        2      | \                   x    /                  2                                                   cos(2*x)                                                       cos(2*x)                 
                                                      x                              \     cos (2*x) /                                            x                                                                                                                                            
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                            cos(2*x)                                                                                                                                           
$$\frac{12 \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{x}\right) \left(\frac{2 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 1\right) \log{\left(x \right)}^{2} + \frac{8 \left(\frac{6 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 5\right) \log{\left(x \right)}^{3} \sin{\left(x \right)} \sin{\left(2 x \right)}}{\cos{\left(2 x \right)}} - \frac{6 \left(\log{\left(x \right)}^{2} \sin{\left(x \right)} - \frac{6 \log{\left(x \right)} \cos{\left(x \right)}}{x} + \frac{3 \left(\log{\left(x \right)} - 2\right) \sin{\left(x \right)}}{x^{2}}\right) \log{\left(x \right)} \sin{\left(2 x \right)}}{\cos{\left(2 x \right)}} - \log{\left(x \right)}^{3} \cos{\left(x \right)} - \frac{9 \log{\left(x \right)}^{2} \sin{\left(x \right)}}{x} - \frac{9 \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)} \cos{\left(x \right)}}{x^{2}} + \frac{6 \left(\log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right) \sin{\left(x \right)}}{x^{3}}}{\cos{\left(2 x \right)}}$$
The graph
Derivative of y=(ln^3sinx)/cos2x