Mister Exam

Other calculators


y=ln(ctg2x^3)

Derivative of y=ln(ctg2x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   3     \
log\cot (2*x)/
$$\log{\left(\cot^{3}{\left(2 x \right)} \right)}$$
log(cot(2*x)^3)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. Let .

            2. The derivative of sine is cosine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            To find :

            1. Let .

            2. The derivative of cosine is negative sine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            Now plug in to the quotient rule:

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          2     
-6 - 6*cot (2*x)
----------------
    cot(2*x)    
$$\frac{- 6 \cot^{2}{\left(2 x \right)} - 6}{\cot{\left(2 x \right)}}$$
The second derivative [src]
   /                                 2\
   |                  /       2     \ |
   |         2        \1 + cot (2*x)/ |
12*|2 + 2*cot (2*x) - ----------------|
   |                        2         |
   \                     cot (2*x)    /
$$12 \left(- \frac{\left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\cot^{2}{\left(2 x \right)}} + 2 \cot^{2}{\left(2 x \right)} + 2\right)$$
The third derivative [src]
                   /                             2                    \
                   |              /       2     \      /       2     \|
   /       2     \ |              \1 + cot (2*x)/    2*\1 + cot (2*x)/|
48*\1 + cot (2*x)/*|-2*cot(2*x) - ---------------- + -----------------|
                   |                    3                 cot(2*x)    |
                   \                 cot (2*x)                        /
$$48 \left(\cot^{2}{\left(2 x \right)} + 1\right) \left(- \frac{\left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\cot^{3}{\left(2 x \right)}} + \frac{2 \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)}} - 2 \cot{\left(2 x \right)}\right)$$
The graph
Derivative of y=ln(ctg2x^3)