Mister Exam

Derivative of y=ln(cos7x+8)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(cos(7*x) + 8)
$$\log{\left(\cos{\left(7 x \right)} + 8 \right)}$$
log(cos(7*x) + 8)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      4. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-7*sin(7*x) 
------------
cos(7*x) + 8
$$- \frac{7 \sin{\left(7 x \right)}}{\cos{\left(7 x \right)} + 8}$$
The second derivative [src]
    /    2                  \
    | sin (7*x)             |
-49*|------------ + cos(7*x)|
    \8 + cos(7*x)           /
-----------------------------
         8 + cos(7*x)        
$$- \frac{49 \left(\cos{\left(7 x \right)} + \frac{\sin^{2}{\left(7 x \right)}}{\cos{\left(7 x \right)} + 8}\right)}{\cos{\left(7 x \right)} + 8}$$
The third derivative [src]
    /                          2       \         
    |     3*cos(7*x)      2*sin (7*x)  |         
343*|1 - ------------ - ---------------|*sin(7*x)
    |    8 + cos(7*x)                 2|         
    \                   (8 + cos(7*x)) /         
-------------------------------------------------
                   8 + cos(7*x)                  
$$\frac{343 \left(1 - \frac{3 \cos{\left(7 x \right)}}{\cos{\left(7 x \right)} + 8} - \frac{2 \sin^{2}{\left(7 x \right)}}{\left(\cos{\left(7 x \right)} + 8\right)^{2}}\right) \sin{\left(7 x \right)}}{\cos{\left(7 x \right)} + 8}$$
The graph
Derivative of y=ln(cos7x+8)