Mister Exam

You entered:

y=ln(4x+5x2)1/x

What you mean?

Derivative of y=ln(4x+5x2)1/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                  1
log(4*x + 5*x2)*1*-
                  x
$$\log{\left(4 x + 5 x_{2} \right)} 1 \cdot \frac{1}{x}$$
d /                  1\
--|log(4*x + 5*x2)*1*-|
dx\                  x/
$$\frac{\partial}{\partial x} \log{\left(4 x + 5 x_{2} \right)} 1 \cdot \frac{1}{x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The first derivative [src]
  log(4*x + 5*x2)         4       
- --------------- + --------------
          2         x*(4*x + 5*x2)
         x                        
$$\frac{4}{x \left(4 x + 5 x_{2}\right)} - \frac{\log{\left(4 x + 5 x_{2} \right)}}{x^{2}}$$
The second derivative [src]
  /        8         log(4*x + 5*x2)         4       \
2*|- ------------- + --------------- - --------------|
  |              2           2         x*(4*x + 5*x2)|
  \  (4*x + 5*x2)           x                        /
------------------------------------------------------
                          x                           
$$\frac{2 \left(- \frac{8}{\left(4 x + 5 x_{2}\right)^{2}} - \frac{4}{x \left(4 x + 5 x_{2}\right)} + \frac{\log{\left(4 x + 5 x_{2} \right)}}{x^{2}}\right)}{x}$$
The third derivative [src]
  /      64        3*log(4*x + 5*x2)          12                24      \
2*|------------- - ----------------- + --------------- + ---------------|
  |            3            3           2                              2|
  \(4*x + 5*x2)            x           x *(4*x + 5*x2)   x*(4*x + 5*x2) /
-------------------------------------------------------------------------
                                    x                                    
$$\frac{2 \cdot \left(\frac{64}{\left(4 x + 5 x_{2}\right)^{3}} + \frac{24}{x \left(4 x + 5 x_{2}\right)^{2}} + \frac{12}{x^{2} \cdot \left(4 x + 5 x_{2}\right)} - \frac{3 \log{\left(4 x + 5 x_{2} \right)}}{x^{3}}\right)}{x}$$