Mister Exam

Other calculators


y=ln(3x^2−2x+5)

Derivative of y=ln(3x^2−2x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2          \
log\3*x  - 2*x + 5/
$$\log{\left(3 x^{2} - 2 x + 5 \right)}$$
d /   /   2          \\
--\log\3*x  - 2*x + 5//
dx                     
$$\frac{d}{d x} \log{\left(3 x^{2} - 2 x + 5 \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      3. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   -2 + 6*x   
--------------
   2          
3*x  - 2*x + 5
$$\frac{6 x - 2}{3 x^{2} - 2 x + 5}$$
The second derivative [src]
  /                2 \
  |    2*(-1 + 3*x)  |
2*|3 - --------------|
  |                 2|
  \    5 - 2*x + 3*x /
----------------------
                 2    
    5 - 2*x + 3*x     
$$\frac{2 \left(- \frac{2 \left(3 x - 1\right)^{2}}{3 x^{2} - 2 x + 5} + 3\right)}{3 x^{2} - 2 x + 5}$$
The third derivative [src]
             /                 2 \
             |     4*(-1 + 3*x)  |
4*(-1 + 3*x)*|-9 + --------------|
             |                  2|
             \     5 - 2*x + 3*x /
----------------------------------
                        2         
        /             2\          
        \5 - 2*x + 3*x /          
$$\frac{4 \cdot \left(3 x - 1\right) \left(\frac{4 \left(3 x - 1\right)^{2}}{3 x^{2} - 2 x + 5} - 9\right)}{\left(3 x^{2} - 2 x + 5\right)^{2}}$$
The graph
Derivative of y=ln(3x^2−2x+5)