log((3*x - 2)*(4 - x))
log((3*x - 2)*(4 - x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
14 - 6*x ----------------- (4 - x)*(3*x - 2)
/ -7 + 3*x 3*(-7 + 3*x)\
2*|3 - -------- - ------------|
\ -4 + x -2 + 3*x /
-------------------------------
(-4 + x)*(-2 + 3*x)
/ 9 3 -7 + 3*x 9*(-7 + 3*x) 3*(-7 + 3*x) \
4*|- -------- - ------ + --------- + ------------ + -------------------|
| -2 + 3*x -4 + x 2 2 (-4 + x)*(-2 + 3*x)|
\ (-4 + x) (-2 + 3*x) /
------------------------------------------------------------------------
(-4 + x)*(-2 + 3*x)