Mister Exam

Derivative of y=ln((3x-2)(4-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log((3*x - 2)*(4 - x))
$$\log{\left(\left(4 - x\right) \left(3 x - 2\right) \right)}$$
log((3*x - 2)*(4 - x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     14 - 6*x    
-----------------
(4 - x)*(3*x - 2)
$$\frac{14 - 6 x}{\left(4 - x\right) \left(3 x - 2\right)}$$
The second derivative [src]
  /    -7 + 3*x   3*(-7 + 3*x)\
2*|3 - -------- - ------------|
  \     -4 + x      -2 + 3*x  /
-------------------------------
      (-4 + x)*(-2 + 3*x)      
$$\frac{2 \left(- \frac{3 \left(3 x - 7\right)}{3 x - 2} + 3 - \frac{3 x - 7}{x - 4}\right)}{\left(x - 4\right) \left(3 x - 2\right)}$$
The third derivative [src]
  /     9         3       -7 + 3*x   9*(-7 + 3*x)       3*(-7 + 3*x)   \
4*|- -------- - ------ + --------- + ------------ + -------------------|
  |  -2 + 3*x   -4 + x           2             2    (-4 + x)*(-2 + 3*x)|
  \                      (-4 + x)    (-2 + 3*x)                        /
------------------------------------------------------------------------
                          (-4 + x)*(-2 + 3*x)                           
$$\frac{4 \left(\frac{9 \left(3 x - 7\right)}{\left(3 x - 2\right)^{2}} - \frac{9}{3 x - 2} + \frac{3 \left(3 x - 7\right)}{\left(x - 4\right) \left(3 x - 2\right)} - \frac{3}{x - 4} + \frac{3 x - 7}{\left(x - 4\right)^{2}}\right)}{\left(x - 4\right) \left(3 x - 2\right)}$$
The graph
Derivative of y=ln((3x-2)(4-x))