Mister Exam

Derivative of y=ln5*log5(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(5)*log(x)
-------------
    log(5)   
log(5)log(x)log(5)\frac{\log{\left(5 \right)} \log{\left(x \right)}}{\log{\left(5 \right)}}
d /log(5)*log(x)\
--|-------------|
dx\    log(5)   /
ddxlog(5)log(x)log(5)\frac{d}{d x} \frac{\log{\left(5 \right)} \log{\left(x \right)}}{\log{\left(5 \right)}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=log(5)log(x)f{\left(x \right)} = \log{\left(5 \right)} \log{\left(x \right)} and g(x)=log(5)g{\left(x \right)} = \log{\left(5 \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      So, the result is: log(5)x\frac{\log{\left(5 \right)}}{x}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of the constant log(5)\log{\left(5 \right)} is zero.

    Now plug in to the quotient rule:

    1x\frac{1}{x}


The answer is:

1x\frac{1}{x}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
1
-
x
1x\frac{1}{x}
The second derivative [src]
-1 
---
  2
 x 
1x2- \frac{1}{x^{2}}
3-th derivative [src]
2 
--
 3
x 
2x3\frac{2}{x^{3}}
The third derivative [src]
2 
--
 3
x 
2x3\frac{2}{x^{3}}
The graph
Derivative of y=ln5*log5(x)