Mister Exam

Other calculators


y=(ln3x-2e^x)^5

Derivative of y=(ln3x-2e^x)^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 5
/              x\ 
\log(3*x) - 2*E / 
$$\left(- 2 e^{x} + \log{\left(3 x \right)}\right)^{5}$$
(log(3*x) - 2*exp(x))^5
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of is itself.

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                 4              
/              x\  /      x   5\
\log(3*x) - 2*E / *|- 10*e  + -|
                   \          x/
$$\left(- 2 e^{x} + \log{\left(3 x \right)}\right)^{4} \left(- 10 e^{x} + \frac{5}{x}\right)$$
The second derivative [src]
                     3 /              2                                 \
   /               x\  |  /  1      x\    /1       x\ /               x\|
-5*\-log(3*x) + 2*e / *|4*|- - + 2*e |  + |-- + 2*e |*\-log(3*x) + 2*e /|
                       |  \  x       /    | 2       |                   |
                       \                  \x        /                   /
$$- 5 \left(\left(2 e^{x} + \frac{1}{x^{2}}\right) \left(2 e^{x} - \log{\left(3 x \right)}\right) + 4 \left(2 e^{x} - \frac{1}{x}\right)^{2}\right) \left(2 e^{x} - \log{\left(3 x \right)}\right)^{3}$$
The third derivative [src]
                      2 /              3                     2                                                            \
    /               x\  |  /  1      x\    /               x\  /  1     x\     /1       x\ /  1      x\ /               x\|
-10*\-log(3*x) + 2*e / *|6*|- - + 2*e |  + \-log(3*x) + 2*e / *|- -- + e | + 6*|-- + 2*e |*|- - + 2*e |*\-log(3*x) + 2*e /|
                        |  \  x       /                        |   3     |     | 2       | \  x       /                   |
                        \                                      \  x      /     \x        /                                /
$$- 10 \left(2 e^{x} - \log{\left(3 x \right)}\right)^{2} \left(\left(e^{x} - \frac{1}{x^{3}}\right) \left(2 e^{x} - \log{\left(3 x \right)}\right)^{2} + 6 \left(2 e^{x} + \frac{1}{x^{2}}\right) \left(2 e^{x} - \frac{1}{x}\right) \left(2 e^{x} - \log{\left(3 x \right)}\right) + 6 \left(2 e^{x} - \frac{1}{x}\right)^{3}\right)$$
The graph
Derivative of y=(ln3x-2e^x)^5