Mister Exam

Derivative of y=lg(x-cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x - cos(x))
$$\log{\left(x - \cos{\left(x \right)} \right)}$$
log(x - cos(x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
1 + sin(x)
----------
x - cos(x)
$$\frac{\sin{\left(x \right)} + 1}{x - \cos{\left(x \right)}}$$
The second derivative [src]
              2         
  (1 + sin(x))          
- ------------- + cos(x)
    x - cos(x)          
------------------------
       x - cos(x)       
$$\frac{\cos{\left(x \right)} - \frac{\left(\sin{\left(x \right)} + 1\right)^{2}}{x - \cos{\left(x \right)}}}{x - \cos{\left(x \right)}}$$
The third derivative [src]
                        3                        
          2*(1 + sin(x))    3*(1 + sin(x))*cos(x)
-sin(x) + --------------- - ---------------------
                       2          x - cos(x)     
           (x - cos(x))                          
-------------------------------------------------
                    x - cos(x)                   
$$\frac{- \sin{\left(x \right)} - \frac{3 \left(\sin{\left(x \right)} + 1\right) \cos{\left(x \right)}}{x - \cos{\left(x \right)}} + \frac{2 \left(\sin{\left(x \right)} + 1\right)^{3}}{\left(x - \cos{\left(x \right)}\right)^{2}}}{x - \cos{\left(x \right)}}$$
The graph
Derivative of y=lg(x-cosx)