Mister Exam

Other calculators


y=tanh^2(x+1)+sech^2(x+1)

Derivative of y=tanh^2(x+1)+sech^2(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2              2       
tanh (x + 1) + sech (x + 1)
$$\tanh^{2}{\left(x + 1 \right)} + \operatorname{sech}^{2}{\left(x + 1 \right)}$$
d /    2              2       \
--\tanh (x + 1) + sech (x + 1)/
dx                             
$$\frac{d}{d x} \left(\tanh^{2}{\left(x + 1 \right)} + \operatorname{sech}^{2}{\left(x + 1 \right)}\right)$$
The graph
The first derivative [src]
/          2       \                     2                   
\2 - 2*tanh (x + 1)/*tanh(x + 1) - 2*sech (x + 1)*tanh(x + 1)
$$- 2 \tanh{\left(x + 1 \right)} \operatorname{sech}^{2}{\left(x + 1 \right)} + \left(- 2 \tanh^{2}{\left(x + 1 \right)} + 2\right) \tanh{\left(x + 1 \right)}$$
The second derivative [src]
  /                   2                                                                                                      \
  |/         2       \        2        /         2       \         2            2                2        /         2       \|
2*\\-1 + tanh (1 + x)/  + sech (1 + x)*\-1 + tanh (1 + x)/ + 2*sech (1 + x)*tanh (1 + x) + 2*tanh (1 + x)*\-1 + tanh (1 + x)//
$$2 \left(2 \tanh^{2}{\left(x + 1 \right)} \operatorname{sech}^{2}{\left(x + 1 \right)} + 2 \left(\tanh^{2}{\left(x + 1 \right)} - 1\right) \tanh^{2}{\left(x + 1 \right)} + \left(\tanh^{2}{\left(x + 1 \right)} - 1\right) \operatorname{sech}^{2}{\left(x + 1 \right)} + \left(\tanh^{2}{\left(x + 1 \right)} - 1\right)^{2}\right)$$
The third derivative [src]
   /                     2                                                                                                    \            
   |  /         2       \        2            2              2        /         2       \         2        /         2       \|            
-8*\2*\-1 + tanh (1 + x)/  + sech (1 + x)*tanh (1 + x) + tanh (1 + x)*\-1 + tanh (1 + x)/ + 2*sech (1 + x)*\-1 + tanh (1 + x)//*tanh(1 + x)
$$- 8 \cdot \left(\tanh^{2}{\left(x + 1 \right)} \operatorname{sech}^{2}{\left(x + 1 \right)} + \left(\tanh^{2}{\left(x + 1 \right)} - 1\right) \tanh^{2}{\left(x + 1 \right)} + 2 \left(\tanh^{2}{\left(x + 1 \right)} - 1\right) \operatorname{sech}^{2}{\left(x + 1 \right)} + 2 \left(\tanh^{2}{\left(x + 1 \right)} - 1\right)^{2}\right) \tanh{\left(x + 1 \right)}$$
The graph
Derivative of y=tanh^2(x+1)+sech^2(x+1)