The second derivative
[src]
/ 2*cos(x) x*(5 + sin(x))\
2*|-asin(x)*sin(x) + ----------- + --------------|
| ________ 3/2 |
| / 2 / 2\ |
\ \/ 1 - x \1 - x / /
$$2 \left(\frac{x \left(\sin{\left(x \right)} + 5\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \sin{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{\sqrt{1 - x^{2}}}\right)$$
The third derivative
[src]
/ / 2 \ \
| | 3*x | |
| |-1 + -------|*(5 + sin(x)) |
| | 2| |
| 3*sin(x) \ -1 + x / 3*x*cos(x)|
2*|-asin(x)*cos(x) - ----------- - --------------------------- + -----------|
| ________ 3/2 3/2|
| / 2 / 2\ / 2\ |
\ \/ 1 - x \1 - x / \1 - x / /
$$2 \left(\frac{3 x \cos{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \cos{\left(x \right)} \operatorname{asin}{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{\sqrt{1 - x^{2}}} - \frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \left(\sin{\left(x \right)} + 5\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right)$$