Mister Exam

Other calculators

Derivative of y=(5+sinx)arcsinx2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(5 + sin(x))*asin(x)*2
$$2 \left(\sin{\left(x \right)} + 5\right) \operatorname{asin}{\left(x \right)}$$
((5 + sin(x))*asin(x))*2
The graph
The first derivative [src]
2*(5 + sin(x))                   
-------------- + 2*asin(x)*cos(x)
    ________                     
   /      2                      
 \/  1 - x                       
$$2 \cos{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{2 \left(\sin{\left(x \right)} + 5\right)}{\sqrt{1 - x^{2}}}$$
The second derivative [src]
  /                    2*cos(x)    x*(5 + sin(x))\
2*|-asin(x)*sin(x) + ----------- + --------------|
  |                     ________            3/2  |
  |                    /      2     /     2\     |
  \                  \/  1 - x      \1 - x /     /
$$2 \left(\frac{x \left(\sin{\left(x \right)} + 5\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \sin{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{\sqrt{1 - x^{2}}}\right)$$
The third derivative [src]
  /                                /          2 \                           \
  |                                |       3*x  |                           |
  |                                |-1 + -------|*(5 + sin(x))              |
  |                                |           2|                           |
  |                    3*sin(x)    \     -1 + x /                 3*x*cos(x)|
2*|-asin(x)*cos(x) - ----------- - --------------------------- + -----------|
  |                     ________                   3/2                   3/2|
  |                    /      2            /     2\              /     2\   |
  \                  \/  1 - x             \1 - x /              \1 - x /   /
$$2 \left(\frac{3 x \cos{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \cos{\left(x \right)} \operatorname{asin}{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{\sqrt{1 - x^{2}}} - \frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \left(\sin{\left(x \right)} + 5\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right)$$